BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 28453390)

  • 1. The torments of the cohesin ring.
    Chavda AP; Ang K; Ivanov D
    Nucleus; 2017 May; 8(3):261-267. PubMed ID: 28453390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP hydrolysis is required for cohesin's association with chromosomes.
    Arumugam P; Gruber S; Tanaka K; Haering CH; Mechtler K; Nasmyth K
    Curr Biol; 2003 Nov; 13(22):1941-53. PubMed ID: 14614819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge.
    Gruber S; Arumugam P; Katou Y; Kuglitsch D; Helmhart W; Shirahige K; Nasmyth K
    Cell; 2006 Nov; 127(3):523-37. PubMed ID: 17081975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impairing Cohesin Smc1/3 Head Engagement Compensates for the Lack of Eco1 Function.
    Huber RG; Kulemzina I; Ang K; Chavda AP; Suranthran S; Teh JT; Kenanov D; Liu G; Rancati G; Szmyd R; Kaldis P; Bond PJ; Ivanov D
    Structure; 2016 Nov; 24(11):1991-1999. PubMed ID: 27692962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex.
    Hu B; Itoh T; Mishra A; Katoh Y; Chan KL; Upcher W; Godlee C; Roig MB; Shirahige K; Nasmyth K
    Curr Biol; 2011 Jan; 21(1):12-24. PubMed ID: 21185190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cohesin's ATPase activity is stimulated by the C-terminal Winged-Helix domain of its kleisin subunit.
    Arumugam P; Nishino T; Haering CH; Gruber S; Nasmyth K
    Curr Biol; 2006 Oct; 16(20):1998-2008. PubMed ID: 17055978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cohesin's ATPase activity couples cohesin loading onto DNA with Smc3 acetylation.
    Ladurner R; Bhaskara V; Huis in 't Veld PJ; Davidson IF; Kreidl E; Petzold G; Peters JM
    Curr Biol; 2014 Oct; 24(19):2228-37. PubMed ID: 25220052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for ATP hydrolysis-dependent binding of cohesin to DNA.
    Weitzer S; Lehane C; Uhlmann F
    Curr Biol; 2003 Nov; 13(22):1930-40. PubMed ID: 14614818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding of cohesin's coiled coil is important for Scc2/4-induced association with chromosomes.
    Petela NJ; Gonzalez Llamazares A; Dixon S; Hu B; Lee BG; Metson J; Seo H; Ferrer-Harding A; Voulgaris M; Gligoris T; Collier J; Oh BH; Löwe J; Nasmyth KA
    Elife; 2021 Jul; 10():. PubMed ID: 34259632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Reversible Association between Smc Coiled Coils Is Regulated by Lysine Acetylation and Is Required for Cohesin Association with the DNA.
    Kulemzina I; Ang K; Zhao X; Teh JT; Verma V; Suranthran S; Chavda AP; Huber RG; Eisenhaber B; Eisenhaber F; Yan J; Ivanov D
    Mol Cell; 2016 Sep; 63(6):1044-54. PubMed ID: 27618487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Both interaction surfaces within cohesin's hinge domain are essential for its stable chromosomal association.
    Mishra A; Hu B; Kurze A; Beckouët F; Farcas AM; Dixon SE; Katou Y; Khalid S; Shirahige K; Nasmyth K
    Curr Biol; 2010 Feb; 20(4):279-89. PubMed ID: 20153193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cohesin ring concatenates sister DNA molecules.
    Haering CH; Farcas AM; Arumugam P; Metson J; Nasmyth K
    Nature; 2008 Jul; 454(7202):297-301. PubMed ID: 18596691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a region in the coiled-coil domain of Smc3 that is essential for cohesin activity.
    Orgil O; Mor H; Matityahu A; Onn I
    Nucleic Acids Res; 2016 Jul; 44(13):6309-17. PubMed ID: 27307603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppressor mutation analysis combined with 3D modeling explains cohesin's capacity to hold and release DNA.
    Xu X; Kanai R; Nakazawa N; Wang L; Toyoshima C; Yanagida M
    Proc Natl Acad Sci U S A; 2018 May; 115(21):E4833-E4842. PubMed ID: 29735656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A topological interaction between cohesin rings and a circular minichromosome.
    Ivanov D; Nasmyth K
    Cell; 2005 Sep; 122(6):849-60. PubMed ID: 16179255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Closing the cohesin ring: structure and function of its Smc3-kleisin interface.
    Gligoris TG; Scheinost JC; Bürmann F; Petela N; Chan KL; Uluocak P; Beckouët F; Gruber S; Nasmyth K; Löwe J
    Science; 2014 Nov; 346(6212):963-7. PubMed ID: 25414305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of the cohesin ATPase elucidates the mechanism of SMC-kleisin ring opening.
    Muir KW; Li Y; Weis F; Panne D
    Nat Struct Mol Biol; 2020 Mar; 27(3):233-239. PubMed ID: 32066964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Cohesin Ring Uses Its Hinge to Organize DNA Using Non-topological as well as Topological Mechanisms.
    Srinivasan M; Scheinost JC; Petela NJ; Gligoris TG; Wissler M; Ogushi S; Collier JE; Voulgaris M; Kurze A; Chan KL; Hu B; Costanzo V; Nasmyth KA
    Cell; 2018 May; 173(6):1508-1519.e18. PubMed ID: 29754816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the cohesin loader Scc2 and insight into cohesinopathy.
    Kikuchi S; Borek DM; Otwinowski Z; Tomchick DR; Yu H
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12444-12449. PubMed ID: 27791135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic evidence that the acetylation of the Smc3p subunit of cohesin modulates its ATP-bound state to promote cohesion establishment in Saccharomyces cerevisiae.
    Heidinger-Pauli JM; Onn I; Koshland D
    Genetics; 2010 Aug; 185(4):1249-56. PubMed ID: 20498298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.