These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 2845369)

  • 1. The structure of the regulatory region of the rat L1 (L1Rn, long interspersed repeated) DNA family of transposable elements.
    Furano AV; Robb SM; Robb FT
    Nucleic Acids Res; 1988 Oct; 16(19):9215-31. PubMed ID: 2845369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The left end of rat L1 (L1Rn, long interspersed repeated) DNA which is a CpG island can function as a promoter.
    Nur I; Pascale E; Furano AV
    Nucleic Acids Res; 1988 Oct; 16(19):9233-51. PubMed ID: 2459662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target sites for the transposition of rat long interspersed repeated DNA elements (LINEs) are not random.
    Furano AV; Somerville CC; Tsichlis PN; D'Ambrosio E
    Nucleic Acids Res; 1986 May; 14(9):3717-27. PubMed ID: 3012480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evolution of long interspersed repeated DNA (L1, LINE 1) as revealed by the analysis of an ancient rodent L1 DNA family.
    Pascale E; Liu C; Valle E; Usdin K; Furano AV
    J Mol Evol; 1993 Jan; 36(1):9-20. PubMed ID: 8433380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strand-specific LINE-1 transcription in mouse F9 cells originates from the youngest phylogenetic subgroup of LINE-1 elements.
    Schichman SA; Severynse DM; Edgell MH; Hutchison CA
    J Mol Biol; 1992 Apr; 224(3):559-74. PubMed ID: 1314898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of E. coli host strain on the consensus sequence of regions of the human L1 transposon.
    Crowther PJ; Cartwright AL; Hocking A; Jefferson S; Ford MD; Woodcock DM
    Nucleic Acids Res; 1989 Sep; 17(18):7229-39. PubMed ID: 2552406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of long sequence alignments to study the evolution and regulation of mammalian globin gene clusters.
    Hardison R; Miller W
    Mol Biol Evol; 1993 Jan; 10(1):73-102. PubMed ID: 8383794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the highly repeated, long interspersed DNA family (LINE or L1Rn) of the rat.
    D'Ambrosio E; Waitzkin SD; Witney FR; Salemme A; Furano AV
    Mol Cell Biol; 1986 Feb; 6(2):411-24. PubMed ID: 3023845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplification of an ancestral mammalian L1 family of long interspersed repeated DNA occurred just before the murine radiation.
    Pascale E; Valle E; Furano AV
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9481-5. PubMed ID: 2251288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of an internal cis-element essential for the human L1 transcription and a nuclear factor(s) binding to the element.
    Minakami R; Kurose K; Etoh K; Furuhata Y; Hattori M; Sakaki Y
    Nucleic Acids Res; 1992 Jun; 20(12):3139-45. PubMed ID: 1320255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conservation throughout mammalia and extensive protein-encoding capacity of the highly repeated DNA long interspersed sequence one.
    Burton FH; Loeb DD; Voliva CF; Martin SL; Edgell MH; Hutchison CA
    J Mol Biol; 1986 Jan; 187(2):291-304. PubMed ID: 3009828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promoter binding proteins of an active human L1 retrotransposon.
    Mathias SL; Scott AF
    Biochem Biophys Res Commun; 1993 Mar; 191(2):625-32. PubMed ID: 8384847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L1 A-monomer tandem arrays have expanded during the course of mouse L1 evolution.
    Schichman SA; Adey NB; Edgell MH; Hutchison CA
    Mol Biol Evol; 1993 May; 10(3):552-70. PubMed ID: 8336543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of cDNA including a reverse transcriptase-like sequence transcribed from the long interspersed repetitive DNA sequence of rat.
    Edamura T; Maruyama Y; Soeda E; Kimura G; Onodera K
    Agric Biol Chem; 1991 Oct; 55(10):2475-8. PubMed ID: 1371052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A transposon with an unusual LTR arrangement from Chlamydomonas reinhardtii contains an internal tandem array of 76 bp repeats.
    Day A; Rochaix JD
    Nucleic Acids Res; 1991 Mar; 19(6):1259-66. PubMed ID: 1851555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence and unusual 3' flanking region of the rat tRNA[Ser]Sec gene.
    Kolker JD; Sharma J; Cruz R; Diamond AM
    Gene; 1995 Oct; 164(2):375-6. PubMed ID: 7590363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of human CYP11B1 and CYP11B2 promoters by transposable elements and conserved cis elements.
    Cheng LC; Pai TW; Li LA
    Steroids; 2012 Jan; 77(1-2):100-9. PubMed ID: 22079243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revised genomic consensus for the hypermethylated CpG island region of the human L1 transposon and integration sites of full length L1 elements from recombinant clones made using methylation-tolerant host strains.
    Crowther PJ; Doherty JP; Linsenmeyer ME; Williamson MR; Woodcock DM
    Nucleic Acids Res; 1991 May; 19(9):2395-401. PubMed ID: 1710354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man.
    Kazazian HH; Wong C; Youssoufian H; Scott AF; Phillips DG; Antonarakis SE
    Nature; 1988 Mar; 332(6160):164-6. PubMed ID: 2831458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subfamily structure and evolution of the human L1 family of repetitive sequences.
    Jurka J
    J Mol Evol; 1989 Dec; 29(6):496-503. PubMed ID: 2515296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.