These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 28453989)

  • 1. Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling.
    Guo X; Cao X; Huang G; Tian Q; Sun H
    J Environ Manage; 2017 Aug; 198(Pt 1):84-89. PubMed ID: 28453989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy.
    Xiao J; Li J; Xu Z
    Environ Sci Technol; 2017 Oct; 51(20):11960-11966. PubMed ID: 28915021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques.
    Zhang T; He Y; Wang F; Ge L; Zhu X; Li H
    Waste Manag; 2014 Jun; 34(6):1051-8. PubMed ID: 24472715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy.
    Xiao J; Li J; Xu Z
    J Hazard Mater; 2017 Sep; 338():124-131. PubMed ID: 28544937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel electrochemically driven and internal circulation process for valuable metals recycling from spent lithium-ion batteries.
    Li S; Wu X; Jiang Y; Zhou T; Zhao Y; Chen X
    Waste Manag; 2021 Dec; 136():18-27. PubMed ID: 34634567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery and regeneration of LiCoO
    Tang Y; Xie H; Zhang B; Chen X; Zhao Z; Qu J; Xing P; Yin H
    Waste Manag; 2019 Sep; 97():140-148. PubMed ID: 31447021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.
    Chen X; Zhou T
    Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel pulsated pneumatic separation with variable-diameter structure and its application in the recycling spent lithium-ion batteries.
    Zhu X; Zhang C; Feng P; Yang X; Yang X
    Waste Manag; 2021 Jul; 131():20-30. PubMed ID: 34091235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A green and effective room-temperature recycling process of LiFePO
    Li L; Bian Y; Zhang X; Yao Y; Xue Q; Fan E; Wu F; Chen R
    Waste Manag; 2019 Feb; 85():437-444. PubMed ID: 30803599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical process for electrode material of spent lithium ion batteries.
    Prabaharan G; Barik SP; Kumar N; Kumar L
    Waste Manag; 2017 Oct; 68():527-533. PubMed ID: 28711181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recycling Spent Lithium-Ion Batteries Using Waste Benzene-Containing Plastics: Synergetic Thermal Reduction and Benzene Decomposition.
    Qiu B; Liu M; Qu X; Zhang B; Xie H; Wang D; Lee LYS; Yin H
    Environ Sci Technol; 2023 May; 57(19):7599-7611. PubMed ID: 37140343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling the recovery of spent lithium-ion batteries and the treatment of phenol wastewater: A "treating waste with waste" strategy.
    Luo S; Zhu X; Gong M; Mo R; Yang S
    Chemosphere; 2023 Nov; 341():140018. PubMed ID: 37657706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient separation and recovery of lithium through volatilization in the recycling process of spent lithium-ion batteries.
    Qu G; Wei Y; Liu C; Yao S; Zhou S; Li B
    Waste Manag; 2022 Aug; 150():66-74. PubMed ID: 35803158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applicability of the reduction smelting recycling process to different types of spent lithium-ion batteries cathode materials.
    Qu G; Yang J; Wang H; Ran Y; Li B; Wei Y
    Waste Manag; 2023 Jul; 166():222-232. PubMed ID: 37196388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium.
    Chen X; Cao L; Kang D; Li J; Zhou T; Ma H
    Waste Manag; 2018 Oct; 80():198-210. PubMed ID: 30455000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organics removal combined with in situ thermal-reduction for enhancing the liberation and metallurgy efficiency of LiCoO
    Zhang G; Yuan X; He Y; Wang H; Xie W; Zhang T
    Waste Manag; 2020 Sep; 115():113-120. PubMed ID: 32736031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach.
    Wang MM; Zhang CC; Zhang FS
    Waste Manag; 2016 May; 51():239-244. PubMed ID: 26965214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave Pyrolysis of Macadamia Shells for Efficiently Recycling Lithium from Spent Lithium-ion Batteries.
    Zhao Y; Liu B; Zhang L; Guo S
    J Hazard Mater; 2020 Sep; 396():122740. PubMed ID: 32388185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.