BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28454004)

  • 1. Growth and phycocyanin synthesis in the heterotrophic microalga Galdieria sulphuraria on substrates made of food waste from restaurants and bakeries.
    Sloth JK; Jensen HC; Pleissner D; Eriksen NT
    Bioresour Technol; 2017 Aug; 238():296-305. PubMed ID: 28454004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterotrophic high cell-density fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria.
    Schmidt RA; Wiebe MG; Eriksen NT
    Biotechnol Bioeng; 2005 Apr; 90(1):77-84. PubMed ID: 15723314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification of the photosynthetic pigment C-phycocyanin from heterotrophic Galdieria sulphuraria.
    Sørensen L; Hantke A; Eriksen NT
    J Sci Food Agric; 2013 Sep; 93(12):2933-8. PubMed ID: 23427028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel paradigm for the high-efficient production of phycocyanin from Galdieria sulphuraria.
    Wan M; Wang Z; Zhang Z; Wang J; Li S; Yu A; Li Y
    Bioresour Technol; 2016 Oct; 218():272-8. PubMed ID: 27372006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Productivity, amino acid profile, and protein bioaccessibility in heterotrophic batch cultivation of Galdieria sulphuraria.
    Abiusi F; Tumulero B; Neutsch L; Mathys A
    Bioresour Technol; 2024 May; 399():130628. PubMed ID: 38521173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cultivation of the heterotrophic microalga Galdieria sulphuraria on food waste: A Life Cycle Assessment.
    Thielemann AK; Smetana S; Pleissner D
    Bioresour Technol; 2021 Nov; 340():125637. PubMed ID: 34315124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin.
    Graverholt OS; Eriksen NT
    Appl Microbiol Biotechnol; 2007 Nov; 77(1):69-75. PubMed ID: 17786429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of sugars in wastewater from food production through heterotrophic growth of
    Scherhag P; Ackermann JU
    Eng Life Sci; 2021 Mar; 21(3-4):233-241. PubMed ID: 33716621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An automated, modular system for organic waste utilization using heterotrophic alga Galdieria sulphuraria: Design considerations and sustainability.
    Julius Pahmeyer M; Anusha Siddiqui S; Pleissner D; Gołaszewski J; Heinz V; Smetana S
    Bioresour Technol; 2022 Mar; 348():126800. PubMed ID: 35121101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-removal of PtCl
    Sun Y; Shi M; Lu T; Ding D; Sun Y; Yuan Y
    Sci Total Environ; 2021 Nov; 796():149021. PubMed ID: 34280622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterotrophic cultivation of Galdieria sulphuraria under non-sterile conditions in digestate and hydrolyzed straw.
    Pleissner D; Lindner AV; Händel N
    Bioresour Technol; 2021 Oct; 337():125477. PubMed ID: 34320757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth under Different Trophic Regimes and Synchronization of the Red Microalga
    Náhlík V; Zachleder V; Čížková M; Bišová K; Singh A; Mezricky D; Řezanka T; Vítová M
    Biomolecules; 2021 Jun; 11(7):. PubMed ID: 34202768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant and anti-proliferative properties of extracts from heterotrophic cultures of
    Bottone C; Camerlingo R; Miceli R; Salbitani G; Sessa G; Pirozzi G; Carfagna S
    Nat Prod Res; 2019 Jun; 33(11):1659-1663. PubMed ID: 29334254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cultivation of Acidophilic Algae
    Hirooka S; Miyagishima SY
    Front Microbiol; 2016; 7():2022. PubMed ID: 28066348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria.
    Graziani G; Schiavo S; Nicolai MA; Buono S; Fogliano V; Pinto G; Pollio A
    Food Funct; 2013 Jan; 4(1):144-52. PubMed ID: 23104098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Oxygen Limitation on the Biosynthesis of Photo Pigments in the Red Microalgae Galdieria sulphuraria Strain 074G.
    Sarian FD; Rahman DY; Schepers O; van der Maarel MJ
    PLoS One; 2016; 11(2):e0148358. PubMed ID: 26859750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomass and phycobiliprotein production of Galdieria sulphuraria, immobilized on a twin-layer porous substrate photobioreactor.
    Carbone DA; Olivieri G; Pollio A; Melkonian M
    Appl Microbiol Biotechnol; 2020 Apr; 104(7):3109-3119. PubMed ID: 32060692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterotrophic growth of Galdieria sulphuraria on residues from aquaculture and fish processing industries.
    Pleissner D; Schönfelder S; Händel N; Dalichow J; Ettinger J; Kvangarsnes K; Dauksas E; Rustad T; Cropotova J
    Bioresour Technol; 2023 Sep; 384():129281. PubMed ID: 37295476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical composition and in vitro digestibility of Galdieria sulphuraria grown on spent cherry-brine liquid.
    Massa M; Buono S; Langellotti AL; Martello A; Russo GL; Troise DA; Sacchi R; Vitaglione P; Fogliano V
    N Biotechnol; 2019 Nov; 53():9-15. PubMed ID: 31195159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the highly branched glycogen from the thermoacidophilic red microalga Galdieria sulphuraria and comparison with other glycogens.
    Martinez-Garcia M; Stuart MC; van der Maarel MJ
    Int J Biol Macromol; 2016 Aug; 89():12-8. PubMed ID: 27107958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.