These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 28454016)

  • 1. Bohr effect of native and chemically modified hemoglobins: Quantitative analyses based on the Wyman equation.
    Okonjo KO
    Biophys Chem; 2017 Jul; 226():34-42. PubMed ID: 28454016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bohr effect of human hemoglobin: Separation of tertiary and quaternary contributions based on the Wyman equation.
    Okonjo KO
    Biophys Chem; 2017 Sep; 228():87-97. PubMed ID: 28743047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bohr effect of avian hemoglobins: Quantitative analyses based on the Wyman equation.
    Okonjo KO
    J Theor Biol; 2016 Dec; 410():25-35. PubMed ID: 27614259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bohr effect of hemoglobins: Accounting for differences in magnitude.
    Okonjo KO
    J Theor Biol; 2015 Sep; 380():436-43. PubMed ID: 26102019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of surface histidyl residues in the alpha-chain to the Bohr effect of human normal adult hemoglobin: roles of global electrostatic effects.
    Sun DP; Zou M; Ho NT; Ho C
    Biochemistry; 1997 Jun; 36(22):6663-73. PubMed ID: 9184146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bohr effect and oxygen affinity of carp, eel and human hemoglobin: Quantitative analyses provide rationale for the Root effect.
    Okonjo KO
    Biophys Chem; 2018 Nov; 242():45-59. PubMed ID: 30245351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bohr effect of human hemoglobin A: magnitude of negative contributions determined by the equilibrium between two tertiary structures.
    Okonjo KO; Olatunde AM; Fodeke AA; Babalola JO
    Biophys Chem; 2014 Jun; 190-191():41-9. PubMed ID: 24824171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pKa values of two histidine residues in human haemoglobin, the Bohr effect, and the dipole moments of alpha-helices.
    Perutz MF; Gronenborn AM; Clore GM; Fogg JH; Shih DT
    J Mol Biol; 1985 Jun; 183(3):491-8. PubMed ID: 4020866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Bohr effect before Perutz.
    Brunori M
    Biochem Mol Biol Educ; 2012; 40(5):297-9. PubMed ID: 22987550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the Bohr effect due to pyridoxylation of the alpha-chain terminal amino groups of hemoglobin.
    Schnackerz KD; Benesch RE; Benesch R; Kwong S; Ciurak M
    Biochim Biophys Acta; 1984 Nov; 790(3):226-9. PubMed ID: 6487637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. R and R2 quaternary structures of carbonmonoxyhemoglobins: Differential effect of inositol hexakisphosphate on their affinity for Ellman's reagent.
    Okonjo KO; Fodeke AA; Atolaiye OB; Olatunde AM; Ajaelu CJ; Ajelabi O; Adediji AT; Adebayo AM; Uhuo OV; Babalola OJ
    Biophys Chem; 2019 Apr; 247():1-12. PubMed ID: 30753970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Bohr effect of hemoglobin intermediates and the role of salt bridges in the tertiary/quaternary transitions.
    Russo R; Benazzi L; Perrella M
    J Biol Chem; 2001 Apr; 276(17):13628-34. PubMed ID: 11278597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemoglobin Bohr effects: atomic origin of the histidine residue contributions.
    Zheng G; Schaefer M; Karplus M
    Biochemistry; 2013 Nov; 52(47):8539-55. PubMed ID: 24224786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anion Bohr effect of human hemoglobin.
    Bucci E; Fronticelli C
    Biochemistry; 1985 Jan; 24(2):371-6. PubMed ID: 3978079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure changes in hemoglobin upon deletion of C-terminal residues, monitored by resonance Raman spectroscopy.
    Wang D; Spiro TG
    Biochemistry; 1998 Jul; 37(28):9940-51. PubMed ID: 9665699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chain-selective isotopic labeling for NMR studies of large multimeric proteins: application to hemoglobin.
    Simplaceanu V; Lukin JA; Fang TY; Zou M; Ho NT; Ho C
    Biophys J; 2000 Aug; 79(2):1146-54. PubMed ID: 10920044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bohr equation and the lost allosteric Bohr effects in symmetry.
    Lee L
    Biophys Physicobiol; 2019; 16():490-503. PubMed ID: 31984201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution NMR study of the structural basis of the Bohr effect in the monomeric hemoglobins from Chironomus thummi thummi.
    Zhang W; Gersonde K; La Mar GN
    Biochemistry; 1997 Feb; 36(7):1689-98. PubMed ID: 9048552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of substitutions of lysine and aspartic acid for asparagine at beta 108 and of tryptophan for valine at alpha 96 on the structural and functional properties of human normal adult hemoglobin: roles of alpha 1 beta 1 and alpha 1 beta 2 subunit interfaces in the cooperative oxygenation process.
    Tsai CH; Shen TJ; Ho NT; Ho C
    Biochemistry; 1999 Jul; 38(27):8751-61. PubMed ID: 10393550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct measurement of the pK values of an alkaline Bohr group in human hemoglobin.
    Kilmartin JV; Breen JJ; Roberts GC; Ho C
    Proc Natl Acad Sci U S A; 1973 Apr; 70(4):1246-9. PubMed ID: 4515623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.