These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 28454150)

  • 1. Selective propagation and beam splitting of surface plasmons on metallic nanodisk chains.
    Hu Y; Zhao D; Wang Z; Chen F; Xiong X; Peng R; Wang M
    Opt Lett; 2017 May; 42(9):1744-1747. PubMed ID: 28454150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized excitation of polarized light emission by cathodoluminescence spectroscopy.
    Hu Y; Chen F; Gao Y; Xiong X; Peng R; Wang M
    Opt Lett; 2018 Jan; 43(1):158-161. PubMed ID: 29328221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-mode surface-plasmon sensor based on bimetallic film.
    Dyankov G; Zekriti M; Bousmina M
    Appl Opt; 2012 May; 51(13):2451-6. PubMed ID: 22614425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures.
    Hobbs RG; Manfrinato VR; Yang Y; Goodman SA; Zhang L; Stach EA; Berggren KK
    Nano Lett; 2016 Jul; 16(7):4149-57. PubMed ID: 27295061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope.
    Hachtel JA; Marvinney C; Mouti A; Mayo D; Mu R; Pennycook SJ; Lupini AR; Chisholm MF; Haglund RF; Pantelides ST
    Nanotechnology; 2016 Apr; 27(15):155202. PubMed ID: 26934391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focusing dual-wavelength surface plasmons to the same focal plane by a far-field plasmonic lens.
    Venugopalan P; Zhang Q; Li X; Kuipers L; Gu M
    Opt Lett; 2014 Oct; 39(19):5744-7. PubMed ID: 25360974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental investigations into capability of terahertz surface plasmons to bridge macroscopic air gaps.
    Gerasimov VV; Knyazev BA; Nikitin AK; Zhizhin GN
    Opt Express; 2015 Dec; 23(26):33448-59. PubMed ID: 26832009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple-band directional excitation of surface plasmons based on electromagnetically induced transparency.
    Wang Y; Yan X; Hong X
    Appl Opt; 2017 Oct; 56(30):8527-8531. PubMed ID: 29091635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping plasmons at the nanometer scale in an electron microscope.
    Kociak M; Stéphan O
    Chem Soc Rev; 2014 Jun; 43(11):3865-83. PubMed ID: 24604161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Band modulation and in-plane propagation of surface plasmons in composite nanostructures.
    Xu DH; Zhang K; Shao MR; Wu HW; Fan RH; Peng RW; Wang M
    Opt Express; 2014 Oct; 22(21):25700-9. PubMed ID: 25401603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the acoustic frequency of a gold nanodisk through its adhesion layer.
    Chang WS; Wen F; Chakraborty D; Su MN; Zhang Y; Shuang B; Nordlander P; Sader JE; Halas NJ; Link S
    Nat Commun; 2015 May; 6():7022. PubMed ID: 25940095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fundamental Limit of Plasmonic Cathodoluminescence.
    Schmidt FP; Losquin A; Horák M; Hohenester U; Stöger-Pollach M; Krenn JR
    Nano Lett; 2021 Jan; 21(1):590-596. PubMed ID: 33336569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hot-carrier generation from plasmons in an antenna-spacer-mirror nanostructure.
    Sun Z; Fang Y
    Opt Lett; 2020 Aug; 45(15):4357-4360. PubMed ID: 32735298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface plasmons manipulated Smith-Purcell radiation on Yagi-Uda nanoantenna arrays.
    Lan YC; Chen JH; Chen CM
    Opt Express; 2019 Oct; 27(22):32567-32577. PubMed ID: 31684466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signatures of Small Morphological Anisotropies in the Plasmonic and Vibrational Responses of Individual Nano-objects.
    Medeghini F; Rouxel R; Crut A; Maioli P; Rossella F; Banfi F; Vallée F; Del Fatti N
    J Phys Chem Lett; 2019 Sep; 10(18):5372-5380. PubMed ID: 31449419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and Electronic Excitations.
    Iberi V; Mirsaleh-Kohan N; Camden JP
    J Phys Chem Lett; 2013 Apr; 4(7):1070-8. PubMed ID: 26282023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale uniform Au nanodisk arrays fabricated via x-ray interference lithography for reproducible and sensitive SERS substrate.
    Zhang P; Yang S; Wang L; Zhao J; Zhu Z; Liu B; Zhong J; Sun X
    Nanotechnology; 2014 Jun; 25(24):245301. PubMed ID: 24859832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.
    Colliex C; Kociak M; Stéphan O
    Ultramicroscopy; 2016 Mar; 162():A1-A24. PubMed ID: 26778606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propagation of plasmons in designed single crystalline silver nanostructures.
    Kumar S; Lu YW; Huck A; Andersen UL
    Opt Express; 2012 Oct; 20(22):24614-22. PubMed ID: 23187224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementary cathodoluminescence lifetime imaging configurations in a scanning electron microscope.
    Meuret S; Solà Garcia M; Coenen T; Kieft E; Zeijlemaker H; Lätzel M; Christiansen S; Woo SY; Ra YH; Mi Z; Polman A
    Ultramicroscopy; 2019 Feb; 197():28-38. PubMed ID: 30476703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.