BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 28454359)

  • 1. Modeling nasopharyngeal carcinoma in three dimensions.
    Siva Sankar P; Che Mat MF; Muniandy K; Xiang BLS; Ling PS; Hoe SLL; Khoo AS; Mohana-Kumaran N
    Oncol Lett; 2017 Apr; 13(4):2034-2044. PubMed ID: 28454359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment and Analysis of the 3-dimensional (3D) Spheroids Generated from the Nasopharyngeal Carcinoma Cell Line HK1.
    Muniandy K; Sankar PS; Xiang BL; Soo-Beng AK; Balakrishnan V; Mohana-Kumaran N
    Trop Life Sci Res; 2016 Nov; 27(supp1):125-130. PubMed ID: 27965750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer.
    Kessel S; Cribbes S; Bonasu S; Rice W; Qiu J; Chan LL
    Cytometry A; 2017 Sep; 91(9):883-892. PubMed ID: 28618188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3-Dimensional mesothelioma spheroids provide closer to natural pathophysiological tumor microenvironment for drug response studies.
    Shi H; Rath EM; Lin RCY; Sarun KH; Clarke CJ; McCaughan BC; Ke H; Linton A; Lee K; Klebe S; Maitz J; Song K; Wang Y; Kao S; Cheng YY
    Front Oncol; 2022; 12():973576. PubMed ID: 36091141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research.
    Pinto B; Henriques AC; Silva PMA; Bousbaa H
    Pharmaceutics; 2020 Dec; 12(12):. PubMed ID: 33291351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional spheroids of mesenchymal stem/stromal cells promote osteogenesis by activating stemness and Wnt/β-catenin.
    Imamura A; Kajiya H; Fujisaki S; Maeshiba M; Yanagi T; Kojima H; Ohno J
    Biochem Biophys Res Commun; 2020 Mar; 523(2):458-464. PubMed ID: 31882121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment.
    Yoshii Y; Furukawa T; Waki A; Okuyama H; Inoue M; Itoh M; Zhang MR; Wakizaka H; Sogawa C; Kiyono Y; Yoshii H; Fujibayashi Y; Saga T
    Biomaterials; 2015 May; 51():278-289. PubMed ID: 25771018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three dimensional spheroid cell culture for nanoparticle safety testing.
    Sambale F; Lavrentieva A; Stahl F; Blume C; Stiesch M; Kasper C; Bahnemann D; Scheper T
    J Biotechnol; 2015 Jul; 205():120-9. PubMed ID: 25595712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of Uniform 3D Microtumors in Hydrogel Microwell Arrays for Measurement of Viability, Morphology, and Signaling Pathway Activation.
    Singh M; Close DA; Mukundan S; Johnston PA; Sant S
    Assay Drug Dev Technol; 2015 Nov; 13(9):570-83. PubMed ID: 26274587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput three-dimensional spheroid tumor model using a novel stamp-like tool.
    Liao W; Wang J; Xu J; You F; Pan M; Xu X; Weng J; Han X; Li S; Li Y; Liang K; Peng Q; Gao Y
    J Tissue Eng; 2019; 10():2041731419889184. PubMed ID: 31827757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Three-Dimensional Immune Oncology Model for High-Throughput Testing of Tumoricidal Activity.
    Sherman H; Gitschier HJ; Rossi AE
    Front Immunol; 2018; 9():857. PubMed ID: 29740450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the gene silencing potential of AuNP-based approaches on conventional 2D cell culture versus 3D tumor spheroid.
    Oliveira BB; Fernandes AR; Baptista PV
    Front Bioeng Biotechnol; 2024; 12():1320729. PubMed ID: 38410164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S; Clary JM; Seliktar D; Lipke EA
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an
    Lee J; Shin D; Roh JL
    Theranostics; 2018; 8(14):3964-3973. PubMed ID: 30083273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel NCI-H69AR Drug-Resistant Small-Cell Lung Cancer Mini-Tumor Model for Anti-Cancer Treatment Screening.
    van Niekerk A; Wrzesinski K; Steyn D; Gouws C
    Cells; 2023 Jul; 12(15):. PubMed ID: 37566059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the secretome of tri-dimensional spheroid-cultured human mesenchymal stem cells in vitro by interleukin-1 priming.
    Redondo-Castro E; Cunningham CJ; Miller J; Brown H; Allan SM; Pinteaux E
    Stem Cell Res Ther; 2018 Jan; 9(1):11. PubMed ID: 29343288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of 3D cultured multicellular spheroid tumor models in tumor-targeted drug delivery system research.
    Huang BW; Gao JQ
    J Control Release; 2018 Jan; 270():246-259. PubMed ID: 29233763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a luciferase/luciferin cell proliferation (XenoLuc) assay for real-time measurements of Gfp-Luc2-modified cells in a co-culture system.
    Teow SY; Liew K; Che Mat MF; Marzuki M; Abdul Aziz N; Chu TL; Ahmad M; Khoo AS
    BMC Biotechnol; 2019 Jun; 19(1):34. PubMed ID: 31200673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of spherically structured 3D in vitro tumor models -Advances and prospects.
    Ferreira LP; Gaspar VM; Mano JF
    Acta Biomater; 2018 Jul; 75():11-34. PubMed ID: 29803007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.