BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 28454709)

  • 1. Involvement of phenazine-1-carboxylic acid in the interaction between Pseudomonas chlororaphis subsp. aureofaciens strain M71 and Seiridium cardinale in vivo.
    Raio A; Reveglia P; Puopolo G; Cimmino A; Danti R; Evidente A
    Microbiol Res; 2017 Jun; 199():49-56. PubMed ID: 28454709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altering the ratio of phenazines in Pseudomonas chlororaphis (aureofaciens) strain 30-84: effects on biofilm formation and pathogen inhibition.
    Maddula VS; Pierson EA; Pierson LS
    J Bacteriol; 2008 Apr; 190(8):2759-66. PubMed ID: 18263718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Producing Different Phenazines on Bacterial Fitness and Biological Control in
    Yu JM; Wang D; Pierson LS; Pierson EA
    Plant Pathol J; 2018 Feb; 34(1):44-58. PubMed ID: 29422787
    [No Abstract]   [Full Text] [Related]  

  • 4. Population genomics-guided engineering of phenazine biosynthesis in Pseudomonas chlororaphis.
    Thorwall S; Trivedi V; Ottum E; Wheeldon I
    Metab Eng; 2023 Jul; 78():223-234. PubMed ID: 37369325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An upstream sequence modulates phenazine production at the level of transcription and translation in the biological control strain Pseudomonas chlororaphis 30-84.
    Yu JM; Wang D; Ries TR; Pierson LS; Pierson EA
    PLoS One; 2018; 13(2):e0193063. PubMed ID: 29451920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils.
    Wang X; Mavrodi DV; Ke L; Mavrodi OV; Yang M; Thomashow LS; Zheng N; Weller DM; Zhang J
    Microb Biotechnol; 2015 May; 8(3):404-18. PubMed ID: 25219642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terpene arms race in the Seiridium cardinale - Cupressus sempervirens pathosystem.
    Achotegui-Castells A; Della Rocca G; Llusià J; Danti R; Barberini S; Bouneb M; Simoni S; Michelozzi M; Peñuelas J
    Sci Rep; 2016 Jan; 6():18954. PubMed ID: 26796122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic engineering of Pseudomonas chlororaphis Lzh-T5 to enhance production of trans-2,3-dihydro-3-hydroxyanthranilic acid.
    Liu K; Li L; Yao W; Wang W; Huang Y; Wang R; Li P
    Sci Rep; 2021 Aug; 11(1):16451. PubMed ID: 34385485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenazines and other redox-active antibiotics promote microbial mineral reduction.
    Hernandez ME; Kappler A; Newman DK
    Appl Environ Microbiol; 2004 Feb; 70(2):921-8. PubMed ID: 14766572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic insight into the insecticidal potential of a new Pseudomonas chlororaphis isolate.
    Wang H; Zhang Y; Dai D; Fu J; Sung Kim D; Li S; Zhang J; Wang Y; Zhang F
    J Econ Entomol; 2024 Feb; 117(1):82-92. PubMed ID: 38146627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the Static and Dynamic Gene Expression Regulation Toolkit in
    Yue SJ; Zhou Z; Huang P; Wei YC; Zhan SX; Feng TT; Liu JR; Sun HC; Han WS; Xue ZL; Yan ZX; Wang W; Zhang XH; Hu HB
    ACS Synth Biol; 2024 Mar; 13(3):913-920. PubMed ID: 38377538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenazine-1-Carboxylic Acid (PCA), Produced for the First Time as an Antifungal Metabolite by
    Cimmino A; Bahmani Z; Castaldi S; Masi M; Isticato R; Abdollahzadeh J; Amini J; Evidente A
    J Agric Food Chem; 2021 Oct; 69(41):12143-12147. PubMed ID: 34623150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyhydroxyalkanoate production by the plant beneficial rhizobacterium Pseudomonas chlororaphis PCL1606 influences survival and rhizospheric performance.
    Tienda S; Gutiérrez-Barranquero JA; Padilla-Roji I; Arrebola E; de Vicente A; Cazorla FM
    Microbiol Res; 2024 Jan; 278():127527. PubMed ID: 37863020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Economical Production of Phenazine-1-carboxylic Acid from Glycerol by
    Li YX; Yue SJ; Zheng YF; Huang P; Nie YF; Hao XR; Zhang HY; Wang W; Hu HB; Zhang XH
    Biology (Basel); 2023 Sep; 12(10):. PubMed ID: 37887002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic Variation for Economically Important Traits in
    Ismael A; Klápště J; Stovold GT; Fleet K; Dungey H
    Front Plant Sci; 2021; 12():651729. PubMed ID: 34168664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roxarsone biotransformation by a nitroreductase and an acetyltransferase in Pseudomonas chlororaphis, a bacterium isolated from soil.
    Ma JW; Liu GW; Zhai JY; Zhao KQ; Wu YQ; Yu RL; Hu GR; Yan Y
    Chemosphere; 2023 Dec; 345():140558. PubMed ID: 37898462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete genome of Pseudomonas chlororaphis strain UFB2, a soil bacterium with antibacterial activity against bacterial canker pathogen of tomato.
    Deng P; Wang X; Baird SM; Lu SE
    Stand Genomic Sci; 2015; 10():117. PubMed ID: 26634018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sucrose supplements modulate the Pseudomonas chlororaphis-Arabidopsis thaliana interaction via decreasing the production of phenazines and enhancing the root auxin response.
    Tinoco-Tafolla HA; López-Hernández J; Ortiz-Castro R; López-Bucio J; Reyes de la Cruz H; Campos-García J; López-Bucio JS
    J Plant Physiol; 2024 May; 297():154259. PubMed ID: 38705079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antagonistic Activity and Mode of Action of Phenazine-1-Carboxylic Acid, Produced by Marine Bacterium
    Zhang L; Tian X; Kuang S; Liu G; Zhang C; Sun C
    Front Microbiol; 2017; 8():289. PubMed ID: 28289406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and identification of pathogens of
    Zhu X; Ma K; Sun M; Zhang J; Liu L; Niu S
    Front Microbiol; 2023; 14():1231353. PubMed ID: 38029130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.