These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 28454743)
21. Amyloid fibril formation by lens crystallin proteins and its implications for cataract formation. Meehan S; Berry Y; Luisi B; Dobson CM; Carver JA; MacPhee CE J Biol Chem; 2004 Jan; 279(5):3413-9. PubMed ID: 14615485 [TBL] [Abstract][Full Text] [Related]
22. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
23. Stability and cytotoxicity of crystallin amyloid nanofibrils. Kaur M; Healy J; Vasudevamurthy M; Lassé M; Puskar L; Tobin MJ; Valery C; Gerrard JA; Sasso L Nanoscale; 2014 Nov; 6(21):13169-78. PubMed ID: 25255060 [TBL] [Abstract][Full Text] [Related]
24. Human βA3/A1-crystallin splicing mutation causes cataracts by activating the unfolded protein response and inducing apoptosis in differentiating lens fiber cells. Ma Z; Yao W; Chan CC; Kannabiran C; Wawrousek E; Hejtmancik JF Biochim Biophys Acta; 2016 Jun; 1862(6):1214-27. PubMed ID: 26851658 [TBL] [Abstract][Full Text] [Related]
25. IR spectra of lens crystallins. Rózyczka J; Gutsze A Lens Eye Toxic Res; 1991; 8(2-3):217-28. PubMed ID: 1911637 [TBL] [Abstract][Full Text] [Related]
26. Distinct roles of alphaA- and alphaB-crystallins under thermal and UV stresses. Liao JH; Lee JS; Chiou SH Biochem Biophys Res Commun; 2002 Jul; 295(4):854-61. PubMed ID: 12127973 [TBL] [Abstract][Full Text] [Related]
27. alphaA- and alphaB-crystallins protect glucose-6-phosphate dehydrogenase against UVB irradiation-induced inactivation. Reddy GB; Reddy PY; Suryanarayana P Biochem Biophys Res Commun; 2001 Apr; 282(3):712-6. PubMed ID: 11401520 [TBL] [Abstract][Full Text] [Related]
28. Functional and structural studies of alpha-crystallin from galactosemic rat lenses. Huang FY; Ho Y; Shaw TS; Chuang SA Biochem Biophys Res Commun; 2000 Jun; 273(1):197-202. PubMed ID: 10873586 [TBL] [Abstract][Full Text] [Related]
29. Proteostasis and the Regulation of Intra- and Extracellular Protein Aggregation by ATP-Independent Molecular Chaperones: Lens α-Crystallins and Milk Caseins. Carver JA; Ecroyd H; Truscott RJW; Thorn DC; Holt C Acc Chem Res; 2018 Mar; 51(3):745-752. PubMed ID: 29442498 [TBL] [Abstract][Full Text] [Related]
30. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: quantitative benchmark for the interpretation of amyloid and protein infrared spectra. Woys AM; Almeida AM; Wang L; Chiu CC; McGovern M; de Pablo JJ; Skinner JL; Gellman SH; Zanni MT J Am Chem Soc; 2012 Nov; 134(46):19118-28. PubMed ID: 23113791 [TBL] [Abstract][Full Text] [Related]
31. One-shot LC-MS/MS analysis of post-translational modifications including oxidation and deamidation of rat lens α- and β-crystallins induced by γ-irradiation. Kim I; Saito T; Fujii N; Kanamoto T; Fujii N Amino Acids; 2016 Dec; 48(12):2855-2866. PubMed ID: 27600614 [TBL] [Abstract][Full Text] [Related]
32. Isomerization of Asp is essential for assembly of amyloid-like fibrils of αA-crystallin-derived peptide. Magami K; Hachiya N; Morikawa K; Fujii N; Takata T PLoS One; 2021; 16(4):e0250277. PubMed ID: 33857260 [TBL] [Abstract][Full Text] [Related]
33. A rapid, comprehensive liquid chromatography-mass spectrometry (LC-MS)-based survey of the Asp isomers in crystallins from human cataract lenses. Fujii N; Sakaue H; Sasaki H; Fujii N J Biol Chem; 2012 Nov; 287(47):39992-40002. PubMed ID: 23007399 [TBL] [Abstract][Full Text] [Related]
34. GammaD-crystallin associated protein aggregation and lens fiber cell denucleation. Wang K; Cheng C; Li L; Liu H; Huang Q; Xia CH; Yao K; Sun P; Horwitz J; Gong X Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3719-28. PubMed ID: 17652744 [TBL] [Abstract][Full Text] [Related]
35. Structural and functional properties, chaperone activity and posttranslational modifications of alpha-crystallin and its related subunits in the crystalline lens: N-acetylcarnosine, carnosine and carcinine act as alpha- crystallin/small heat shock protein enhancers in prevention and dissolution of cataract in ocular drug delivery formulations of novel therapeutic agents. Babizhayev MA Recent Pat Drug Deliv Formul; 2012 Aug; 6(2):107-48. PubMed ID: 22436026 [TBL] [Abstract][Full Text] [Related]
36. Structure and function of α-crystallins: Traversing from in vitro to in vivo. Haslbeck M; Peschek J; Buchner J; Weinkauf S Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):149-66. PubMed ID: 26116912 [TBL] [Abstract][Full Text] [Related]
37. Mechanism of the very efficient quenching of tryptophan fluorescence in human gamma D- and gamma S-crystallins: the gamma-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage. Chen J; Callis PR; King J Biochemistry; 2009 May; 48(17):3708-16. PubMed ID: 19358562 [TBL] [Abstract][Full Text] [Related]
38. H Hernebring M; Adelöf J; Wiseman J; Petersen A; Zetterberg M Exp Eye Res; 2021 Feb; 203():108395. PubMed ID: 33310056 [TBL] [Abstract][Full Text] [Related]
39. Aggregation of lens crystallins in an in vivo hyperbaric oxygen guinea pig model of nuclear cataract: dynamic light-scattering and HPLC analysis. Simpanya MF; Ansari RR; Suh KI; Leverenz VR; Giblin FJ Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4641-51. PubMed ID: 16303961 [TBL] [Abstract][Full Text] [Related]
40. Alzheimer's disease amyloid-β pathology in the lens of the eye. Moncaster JA; Moir RD; Burton MA; Chadwick O; Minaeva O; Alvarez VE; Ericsson M; Clark JI; McKee AC; Tanzi RE; Goldstein LE Exp Eye Res; 2022 Aug; 221():108974. PubMed ID: 35202705 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]