BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 28454863)

  • 1. Distracting behaviors among teenagers and young, middle-aged, and older adult drivers when driving without and with warnings from an integrated vehicle safety system.
    Kidd DG; Buonarosa ML
    J Safety Res; 2017 Jun; 61():177-185. PubMed ID: 28454863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of an integrated collision warning system on teenage driver behavior.
    Jermakian JS; Bao S; Buonarosa ML; Sayer JR; Farmer CM
    J Safety Res; 2017 Jun; 61():65-75. PubMed ID: 28454872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brake reactions of distracted drivers to pedestrian Forward Collision Warning systems.
    Lubbe N
    J Safety Res; 2017 Jun; 61():23-32. PubMed ID: 28454868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in the sources of distracted driving among Northern Virginia drivers in 2014 and 2018: A comparison of results from two roadside observation surveys.
    Kidd DG; Chaudhary NK
    J Safety Res; 2019 Feb; 68():131-138. PubMed ID: 30876504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive forward collision warnings: The impact of imperfect technology on behavioral adaptation, warning effectiveness and acceptance.
    Reinmueller K; Steinhauser M
    Accid Anal Prev; 2019 Jul; 128():217-229. PubMed ID: 31063907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of age on crash risk associated with driver distraction.
    Guo F; Klauer SG; Fang Y; Hankey JM; Antin JF; Perez MA; Lee SE; Dingus TA
    Int J Epidemiol; 2017 Feb; 46(1):258-265. PubMed ID: 28338711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of naturalistic driving videos of fleet services drivers to estimate driver error and potentially distracting behaviors as risk factors for rear-end versus angle crashes.
    Harland KK; Carney C; McGehee D
    Traffic Inj Prev; 2016 Jul; 17(5):465-71. PubMed ID: 26760293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age and gender differences in time to collision at braking from the 100-Car Naturalistic Driving Study.
    Montgomery J; Kusano KD; Gabler HC
    Traffic Inj Prev; 2014; 15 Suppl 1():S15-20. PubMed ID: 25307380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examining teen driver crashes and the prevalence of distraction: Recent trends, 2007-2015.
    Carney C; Harland KK; McGehee DV
    J Safety Res; 2018 Feb; 64():21-27. PubMed ID: 29636166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using event-triggered naturalistic data to examine the prevalence of teen driver distractions in rear-end crashes.
    Carney C; Harland KK; McGehee DV
    J Safety Res; 2016 Jun; 57():47-52. PubMed ID: 27178079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Teens' distracted driving behavior: Prevalence and predictors.
    Gershon P; Zhu C; Klauer SG; Dingus T; Simons-Morton B
    J Safety Res; 2017 Dec; 63():157-161. PubMed ID: 29203014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of road infrastructure and traffic complexity in speed adaptation behaviour of distracted drivers.
    Oviedo-Trespalacios O; Haque MM; King M; Washington S
    Accid Anal Prev; 2017 Apr; 101():67-77. PubMed ID: 28189943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of collision warning characteristics on driving behaviors and safety in connected vehicle environments.
    Zhao W; Gong S; Zhao D; Liu F; Sze NN; Huang H
    Accid Anal Prev; 2023 Jun; 186():107053. PubMed ID: 37030178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The driver-level crash risk associated with daily cellphone use and cellphone use while driving.
    Atwood J; Guo F; Fitch G; Dingus TA
    Accid Anal Prev; 2018 Oct; 119():149-154. PubMed ID: 30031295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are child occupants a significant source of driving distraction?
    Koppel S; Charlton J; Kopinathan C; Taranto D
    Accid Anal Prev; 2011 May; 43(3):1236-44. PubMed ID: 21376923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distracted Driving, Visual Inattention, and Crash Risk Among Teenage Drivers.
    Gershon P; Sita KR; Zhu C; Ehsani JP; Klauer SG; Dingus TA; Simons-Morton BG
    Am J Prev Med; 2019 Apr; 56(4):494-500. PubMed ID: 30799162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship of Near-Crash/Crash Risk to Time Spent on a Cell Phone While Driving.
    Farmer CM; Klauer SG; McClafferty JA; Guo F
    Traffic Inj Prev; 2015; 16(8):792-800. PubMed ID: 25793747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced driver assistance systems for teen drivers: Teen and parent impressions, perceived need, and intervention preferences.
    Weiss E; Fisher Thiel M; Sultana N; Hannan C; Seacrist T
    Traffic Inj Prev; 2018 Feb; 19(sup1):S120-S124. PubMed ID: 29584476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forward collision warning based on a driver model to increase drivers' acceptance.
    Puente Guillen P; Gohl I
    Traffic Inj Prev; 2019; 20(sup1):S21-S26. PubMed ID: 31381428
    [No Abstract]   [Full Text] [Related]  

  • 20. Young females at risk while driving with a small child.
    Maasalo I; Lehtonen E; Summala H
    Accid Anal Prev; 2017 Nov; 108():321-331. PubMed ID: 28942042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.