These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28455518)

  • 81. Radial mass analysis of the flagellar filament of Salmonella: implications for the subunit folding.
    Yamashita I; Vonderviszt F; Mimori Y; Suzuki H; Oosawa K; Namba K
    J Mol Biol; 1995 Nov; 253(4):547-58. PubMed ID: 7473733
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Purification and CryoEM Image Analysis of the Bacterial Flagellar Filament.
    Yamaguchi T; Miyata T; Makino F; Namba K
    Methods Mol Biol; 2023; 2646():43-53. PubMed ID: 36842105
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A molecular switch: subunit rotations involved in the right-handed to left-handed transitions of Salmonella typhimurium flagellar filaments.
    Trachtenberg S; DeRosier DJ
    J Mol Biol; 1991 Jul; 220(1):67-77. PubMed ID: 2067019
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Simultaneous display of multiple foreign peptides in the FliD capping and FliC filament proteins of the Escherichia coli flagellum.
    Majander K; Korhonen TK; Westerlund-Wikström B
    Appl Environ Microbiol; 2005 Aug; 71(8):4263-8. PubMed ID: 16085812
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Discovery of a proteolytic flagellin family in diverse bacterial phyla that assembles enzymatically active flagella.
    Eckhard U; Bandukwala H; Mansfield MJ; Marino G; Cheng J; Wallace I; Holyoak T; Charles TC; Austin J; Overall CM; Doxey AC
    Nat Commun; 2017 Sep; 8(1):521. PubMed ID: 28900095
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Non-helical perturbations of the flagellar filament: Salmonella typhimurium SJW117 at 9.6 A resolution.
    Trachtenberg S; DeRosier DJ; Zemlin F; Beckmann E
    J Mol Biol; 1998 Mar; 276(4):759-73. PubMed ID: 9500917
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Formation of a single polar flagellum by two distinct flagellar gene sets in Sphingomonas sp. strain A1.
    Maruyama Y; Kobayashi M; Murata K; Hashimoto W
    Microbiology (Reading); 2015 Aug; 161(8):1552-1560. PubMed ID: 26018545
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Structural stability of flagellin subunit affects the rate of flagellin export in the absence of FliS chaperone.
    Furukawa Y; Inoue Y; Sakaguchi A; Mori Y; Fukumura T; Miyata T; Namba K; Minamino T
    Mol Microbiol; 2016 Nov; 102(3):405-416. PubMed ID: 27461872
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Formation of helical filaments by copolymerization of two types of 'straight' flagellins.
    Kamiya R; Asakura S; Yamaguchi S
    Nature; 1980 Aug; 286(5773):628-30. PubMed ID: 7402342
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Rod-to-hook transition for extracellular flagellum assembly is catalyzed by the L-ring-dependent rod scaffold removal.
    Cohen EJ; Hughes KT
    J Bacteriol; 2014 Jul; 196(13):2387-95. PubMed ID: 24748615
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Structural Characterization of the Fla2 Flagellum of Rhodobacter sphaeroides.
    de la Mora J; Uchida K; del Campo AM; Camarena L; Aizawa S; Dreyfus G
    J Bacteriol; 2015 Sep; 197(17):2859-66. PubMed ID: 26124240
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy.
    Yonekura K; Maki-Yonekura S; Namba K
    Nature; 2003 Aug; 424(6949):643-50. PubMed ID: 12904785
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Direct interaction of flagellin termini essential for polymorphic ability of flagellar filament.
    Mimori-Kiyosue Y; Vonderviszt F; Yamashita I; Fujiyoshi Y; Namba K
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15108-13. PubMed ID: 8986772
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Single-file diffusion of flagellin in flagellar filaments.
    Stern AS; Berg HC
    Biophys J; 2013 Jul; 105(1):182-4. PubMed ID: 23823237
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Frequent pauses in Escherichia coli flagella elongation revealed by single cell real-time fluorescence imaging.
    Zhao Z; Zhao Y; Zhuang XY; Lo WC; Baker MAB; Lo CJ; Bai F
    Nat Commun; 2018 May; 9(1):1885. PubMed ID: 29760469
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The structure of the Salmonella typhimurium type III secretion system needle shows divergence from the flagellar system.
    Galkin VE; Schmied WH; Schraidt O; Marlovits TC; Egelman EH
    J Mol Biol; 2010 Mar; 396(5):1392-7. PubMed ID: 20060835
    [TBL] [Abstract][Full Text] [Related]  

  • 97. 3D cryo-EM imaging of bacterial flagella: Novel structural and mechanistic insights into cell motility.
    Mondino S; San Martin F; Buschiazzo A
    J Biol Chem; 2022 Jul; 298(7):102105. PubMed ID: 35671822
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A chain mechanism for flagellum growth.
    Evans LD; Poulter S; Terentjev EM; Hughes C; Fraser GM
    Nature; 2013 Dec; 504(7479):287-90. PubMed ID: 24213633
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Correlation between supercoiling and conformational motions of the bacterial flagellar filament.
    Stadler AM; Unruh T; Namba K; Samatey F; Zaccai G
    Biophys J; 2013 Nov; 105(9):2157-65. PubMed ID: 24209861
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Building a flagellum outside the bacterial cell.
    Evans LD; Hughes C; Fraser GM
    Trends Microbiol; 2014 Oct; 22(10):566-72. PubMed ID: 24973293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.