These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 28455629)

  • 1. Validation of an active shape model-based semi-automated segmentation algorithm for the analysis of thigh muscle and adipose tissue cross-sectional areas.
    Kemnitz J; Eckstein F; Culvenor AG; Ruhdorfer A; Dannhauer T; Ring-Dimitriou S; Sänger AM; Wirth W
    MAGMA; 2017 Oct; 30(5):489-503. PubMed ID: 28455629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical evaluation of fully automated thigh muscle and adipose tissue segmentation using a U-Net deep learning architecture in context of osteoarthritic knee pain.
    Kemnitz J; Baumgartner CF; Eckstein F; Chaudhari A; Ruhdorfer A; Wirth W; Eder SK; Konukoglu E
    MAGMA; 2020 Aug; 33(4):483-493. PubMed ID: 31872357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic muscle and fat segmentation in the thigh from T1-Weighted MRI.
    Orgiu S; Lafortuna CL; Rastelli F; Cadioli M; Falini A; Rizzo G
    J Magn Reson Imaging; 2016 Mar; 43(3):601-10. PubMed ID: 26268693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local MRI-based measures of thigh adipose tissue derived from fully automated deep convolutional neural network-based segmentation show a comparable responsiveness to bidirectional change in body weight as from quality controlled manual segmentation.
    Kemnitz J; Steidle-Kloc E; Wirth W; Fuerst D; Wisser A; Eder SK; Eckstein F
    Ann Anat; 2022 Feb; 240():151866. PubMed ID: 34823014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Longitudinal (4 year) change of thigh muscle and adipose tissue distribution in chronically painful vs painless knees--data from the Osteoarthritis Initiative.
    Ruhdorfer A; Wirth W; Dannhauer T; Eckstein F
    Osteoarthritis Cartilage; 2015 Aug; 23(8):1348-56. PubMed ID: 25887367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate segmentation of subcutaneous and intermuscular adipose tissue from MR images of the thigh.
    Positano V; Christiansen T; Santarelli MF; Ringgaard S; Landini L; Gastaldelli A
    J Magn Reson Imaging; 2009 Mar; 29(3):677-84. PubMed ID: 19243051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated measurement of fat infiltration in the hip abductors from Dixon magnetic resonance imaging.
    Belzunce MA; Henckel J; Fotiadou A; Di Laura A; Hart A
    Magn Reson Imaging; 2020 Oct; 72():61-70. PubMed ID: 32615150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive study on automated muscle segmentation for assessing fat infiltration in neuromuscular diseases.
    Gadermayr M; Disch C; Müller M; Merhof D; Gess B
    Magn Reson Imaging; 2018 May; 48():20-26. PubMed ID: 29269318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated unsupervised multi-parametric classification of adipose tissue depots in skeletal muscle.
    Valentinitsch A; Karampinos DC; Alizai H; Subburaj K; Kumar D; Link TM; Majumdar S
    J Magn Reson Imaging; 2013 Apr; 37(4):917-27. PubMed ID: 23097409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inter- and intra-observer variability of an anatomical landmark-based, manual segmentation method by MRI for the assessment of skeletal muscle fat content and area in subjects from the general population.
    Kiefer LS; Fabian J; Lorbeer R; Machann J; Storz C; Kraus MS; Wintermeyer E; Schlett C; Roemer F; Nikolaou K; Peters A; Bamberg F
    Br J Radiol; 2018 Sep; 91(1089):20180019. PubMed ID: 29658780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thigh muscle segmentation of chemical shift encoding-based water-fat magnetic resonance images: The reference database MyoSegmenTUM.
    Schlaeger S; Freitag F; Klupp E; Dieckmeyer M; Weidlich D; Inhuber S; Deschauer M; Schoser B; Bublitz S; Montagnese F; Zimmer C; Rummeny EJ; Karampinos DC; Kirschke JS; Baum T
    PLoS One; 2018; 13(6):e0198200. PubMed ID: 29879128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative comparison and evaluation of software packages for assessment of abdominal adipose tissue distribution by magnetic resonance imaging.
    Bonekamp S; Ghosh P; Crawford S; Solga SF; Horska A; Brancati FL; Diehl AM; Smith S; Clark JM
    Int J Obes (Lond); 2008 Jan; 32(1):100-11. PubMed ID: 17700582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of Dixon magnetic resonance imaging to quantify effects of physical training on muscle composition-A pilot study in young and healthy men.
    Grimm A; Nickel MD; Chaudry O; Uder M; Jakob F; Kemmler W; Quick HH; Engelke K
    Eur J Radiol; 2019 May; 114():160-166. PubMed ID: 31005168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-sectional areas of fat and muscle in limbs during growth and middle age.
    Kanehisa H; Ikegawa S; Tsunoda N; Fukunaga T
    Int J Sports Med; 1994 Oct; 15(7):420-5. PubMed ID: 8002122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manual segmentation of individual muscles of the quadriceps femoris using MRI: a reappraisal.
    Barnouin Y; Butler-Browne G; Voit T; Reversat D; Azzabou N; Leroux G; Behin A; McPhee JS; Carlier PG; Hogrel JY
    J Magn Reson Imaging; 2014 Jul; 40(1):239-47. PubMed ID: 24615897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliability and validity of the new VikingSlice software for computed tomography body composition analysis.
    Ozola-Zālīte I; Mark EB; Gudauskas T; Lyadov V; Olesen SS; Drewes AM; Pukitis A; Frokjær JB
    Eur J Clin Nutr; 2019 Jan; 73(1):54-61. PubMed ID: 29662230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based automatic pipeline for quantitative assessment of thigh muscle morphology and fatty infiltration.
    Gaj S; Eck BL; Xie D; Lartey R; Lo C; Zaylor W; Yang M; Nakamura K; Winalski CS; Spindler KP; Li X
    Magn Reson Med; 2023 Jun; 89(6):2441-2455. PubMed ID: 36744695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of Peripheral Quantitative Computed Tomography-Derived Thigh Adipose Tissue Subcompartments in Young Girls Using a 3 T MRI Scanner.
    Blew RM; Lee VR; Bea JW; Hetherington-Rauth MC; Galons JP; Altbach MI; Lohman TG; Going SB
    J Clin Densitom; 2018; 21(4):583-594. PubMed ID: 29705002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated quantification of muscle and fat in the thigh from water-, fat-, and nonsuppressed MR images.
    Makrogiannis S; Serai S; Fishbein KW; Schreiber C; Ferrucci L; Spencer RG
    J Magn Reson Imaging; 2012 May; 35(5):1152-61. PubMed ID: 22170747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reliability of a segmentation methodology for assessing intramuscular adipose tissue and other soft-tissue compartments of lower leg MRI images.
    Karampatos S; Papaioannou A; Beattie KA; Maly MR; Chan A; Adachi JD; Pritchard JM
    MAGMA; 2016 Apr; 29(2):237-44. PubMed ID: 26702939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.