These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 28455629)

  • 21. Responsiveness of Subcutaneous Fat, Intermuscular Fat, and Muscle Anatomical Cross-Sectional Area of the Thigh to Longitudinal Body Weight Loss and Gain: Data from the Osteoarthritis Initiative (OAI).
    Steidle-Kloc E; Dannhauer T; Wirth W; Eckstein F
    Cells Tissues Organs; 2022; 211(5):555-564. PubMed ID: 34619678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches.
    Le Troter A; Fouré A; Guye M; Confort-Gouny S; Mattei JP; Gondin J; Salort-Campana E; Bendahan D
    MAGMA; 2016 Apr; 29(2):245-57. PubMed ID: 26983429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of post-fracture non-weight-bearing immobilization on muscle atrophy, intramuscular and intermuscular adipose tissues in the thigh and calf.
    Yoshiko A; Yamauchi K; Kato T; Ishida K; Koike T; Oshida Y; Akima H
    Skeletal Radiol; 2018 Nov; 47(11):1541-1549. PubMed ID: 29948037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated assessment of thigh composition using machine learning for Dixon magnetic resonance images.
    Yang YX; Chong MS; Tay L; Yew S; Yeo A; Tan CH
    MAGMA; 2016 Oct; 29(5):723-31. PubMed ID: 27026244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
    Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM;
    Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated segmentation of abdominal subcutaneous adipose tissue and visceral adipose tissue in obese adolescent in MRI.
    Hui SCN; Zhang T; Shi L; Wang D; Ip CB; Chu WCW
    Magn Reson Imaging; 2018 Jan; 45():97-104. PubMed ID: 29017799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validation of volumetric and single-slice MRI adipose analysis using a novel fully automated segmentation method.
    Addeman BT; Kutty S; Perkins TG; Soliman AS; Wiens CN; McCurdy CM; Beaton MD; Hegele RA; McKenzie CA
    J Magn Reson Imaging; 2015 Jan; 41(1):233-41. PubMed ID: 24431195
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated and reproducible segmentation of visceral and subcutaneous adipose tissue from abdominal MRI.
    Kullberg J; Ahlström H; Johansson L; Frimmel H
    Int J Obes (Lond); 2007 Dec; 31(12):1806-17. PubMed ID: 17593903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of an automated thresholding algorithm for the quantification of paraspinal muscle composition from MRI images.
    Fortin M; Omidyeganeh M; Battié MC; Ahmad O; Rivaz H
    Biomed Eng Online; 2017 May; 16(1):61. PubMed ID: 28532491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Impact of Fatty Infiltration on MRI Segmentation of Lower Limb Muscles in Neuromuscular Diseases: A Comparative Study of Deep Learning Approaches.
    Hostin MA; Ogier AC; Michel CP; Le Fur Y; Guye M; Attarian S; Fortanier E; Bellemare ME; Bendahan D
    J Magn Reson Imaging; 2023 Dec; 58(6):1826-1835. PubMed ID: 37025028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Generalized Log-Ratio Transformation: Learning Shape and Adjacency Priors for Simultaneous Thigh Muscle Segmentation.
    Andrews S; Hamarneh G
    IEEE Trans Med Imaging; 2015 Sep; 34(9):1773-87. PubMed ID: 25700442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MRI FLAIR lesion segmentation in multiple sclerosis: Does automated segmentation hold up with manual annotation?
    Egger C; Opfer R; Wang C; Kepp T; Sormani MP; Spies L; Barnett M; Schippling S
    Neuroimage Clin; 2017; 13():264-270. PubMed ID: 28018853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cachexia in preclinical rheumatoid arthritis: Longitudinal observational study of thigh magnetic resonance imaging from osteoarthritis initiative cohort.
    Moradi K; Mohajer B; Guermazi A; Kwoh CK; Bingham CO; Mohammadi S; Cao X; Wan M; Roemer FW; Demehri S
    J Cachexia Sarcopenia Muscle; 2024 Oct; 15(5):1823-1833. PubMed ID: 38923846
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characteristics of individual thigh muscles including cross-sectional area and adipose tissue content measured by magnetic resonance imaging in knee osteoarthritis: a cross-sectional study.
    Yamauchi K; Kato C; Kato T
    Rheumatol Int; 2019 Apr; 39(4):679-687. PubMed ID: 30689015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An automated method to detect interstitial adipose tissue in thigh muscles for patients with osteoarthritis.
    Prescott JW; Priddy M; Best TM; Pennell M; Swanson MS; Haq F; Jackson RD; Gurcan MN
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6360-3. PubMed ID: 19964162
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Associations of thigh muscle fat infiltration with isometric strength measurements based on chemical shift encoding-based water-fat magnetic resonance imaging.
    Inhuber S; Sollmann N; Schlaeger S; Dieckmeyer M; Burian E; Kohlmeyer C; Karampinos DC; Kirschke JS; Baum T; Kreuzpointner F; Schwirtz A
    Eur Radiol Exp; 2019 Nov; 3(1):45. PubMed ID: 31748839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thigh muscle composition changes in knee osteoarthritis patients during weight loss: Sex-specific analysis using data from osteoarthritis initiative.
    Moradi K; Mohajer B; Mohammadi S; Guermazi A; Ibad HA; Roemer FW; Cao X; Link TM; Demehri S
    Osteoarthritis Cartilage; 2024 Sep; 32(9):1154-1162. PubMed ID: 38851527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Valid and Precise Semiautomated Method for Quantifying Intermuscular Fat Intramuscular Fat in Lower Leg Magnetic Resonance Images.
    Wong AKO; Szabo E; Erlandson M; Sussman MS; Duggina S; Song A; Reitsma S; Gillick H; Adachi JD; Cheung AM
    J Clin Densitom; 2020; 23(4):611-622. PubMed ID: 30352783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationship between physical activity time and intramuscular adipose tissue content of the thigh muscle groups of younger and older men.
    Ogawa M; Tanaka N; Yoshiko A; Oshida Y; Koike T; Akima H
    Sci Rep; 2021 Oct; 11(1):19804. PubMed ID: 34611211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water-fat MRI.
    Karlsson A; Rosander J; Romu T; Tallberg J; Grönqvist A; Borga M; Dahlqvist Leinhard O
    J Magn Reson Imaging; 2015 Jun; 41(6):1558-69. PubMed ID: 25111561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.