These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 28455629)
61. Comparison of manual and semi-automated segmentation methods to evaluate hippocampus volume in APP and PS1 transgenic mice obtained via in vivo magnetic resonance imaging. Hayes K; Buist R; Vincent TJ; Thiessen JD; Zhang Y; Zhang H; Wang J; Summers AR; Kong J; Li XM; Martin M J Neurosci Methods; 2014 Jan; 221():103-11. PubMed ID: 24091139 [TBL] [Abstract][Full Text] [Related]
62. Effects of strength and endurance training on thigh and leg muscle mass and composition in elderly women. Sipilä S; Suominen H J Appl Physiol (1985); 1995 Jan; 78(1):334-40. PubMed ID: 7713834 [TBL] [Abstract][Full Text] [Related]
64. Development and Validation of a Deep Learning System for Segmentation of Abdominal Muscle and Fat on Computed Tomography. Park HJ; Shin Y; Park J; Kim H; Lee IS; Seo DW; Huh J; Lee TY; Park T; Lee J; Kim KW Korean J Radiol; 2020 Jan; 21(1):88-100. PubMed ID: 31920032 [TBL] [Abstract][Full Text] [Related]
65. Predicting composition of leg sections with anthropometry and bioelectrical impedance analysis, using magnetic resonance imaging as reference. Fuller NJ; Hardingham CR; Graves M; Screaton N; Dixon AK; Ward LC; Elia M Clin Sci (Lond); 1999 Jun; 96(6):647-57. PubMed ID: 10334971 [TBL] [Abstract][Full Text] [Related]
66. Estimation of thigh muscle and adipose tissue volume using magnetic resonance imaging and anthropometry. Tothill P; Stewart AD J Sports Sci; 2002 Jul; 20(7):563-76. PubMed ID: 12166882 [TBL] [Abstract][Full Text] [Related]
67. Semi-automated volumetry of MRI serves as a biomarker in neuromuscular patients. Müller M; Dohrn MF; Romanzetti S; Gadermayr M; Reetz K; Krämer NA; Kuhl C; Schulz JB; Gess B Muscle Nerve; 2020 May; 61(5):600-607. PubMed ID: 32022288 [TBL] [Abstract][Full Text] [Related]
68. NIH ImageJ and Slice-O-Matic computed tomography imaging software to quantify soft tissue. Irving BA; Weltman JY; Brock DW; Davis CK; Gaesser GA; Weltman A Obesity (Silver Spring); 2007 Feb; 15(2):370-6. PubMed ID: 17299110 [TBL] [Abstract][Full Text] [Related]
69. Tutorial for using SliceOmatic to calculate thigh area and composition from computed tomography images from older adults. Dennis RA; Long DE; Landes RD; Padala KP; Padala PR; Garner KK; Wise JN; Peterson CA; Sullivan DH PLoS One; 2018; 13(10):e0204529. PubMed ID: 30278056 [TBL] [Abstract][Full Text] [Related]
70. A Knowledge-Based Modality-Independent Technique for Concurrent Thigh Muscle Segmentation: Applicable to CT and MR Images. Molaie M; Zoroofi RA J Digit Imaging; 2020 Oct; 33(5):1122-1135. PubMed ID: 32588159 [TBL] [Abstract][Full Text] [Related]
71. Segmentation of the quadratus lumborum muscle using statistical shape modeling. Engstrom CM; Fripp J; Jurcak V; Walker DG; Salvado O; Crozier S J Magn Reson Imaging; 2011 Jun; 33(6):1422-9. PubMed ID: 21591012 [TBL] [Abstract][Full Text] [Related]
72. Adipose tissue distribution in children: automated quantification using water and fat MRI. Kullberg J; Karlsson AK; Stokland E; Svensson PA; Dahlgren J J Magn Reson Imaging; 2010 Jul; 32(1):204-10. PubMed ID: 20575078 [TBL] [Abstract][Full Text] [Related]
73. Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663 [TBL] [Abstract][Full Text] [Related]
74. Assessment of limb muscle and adipose tissue by dual-energy X-ray absorptiometry using magnetic resonance imaging for comparison. Fuller NJ; Hardingham CR; Graves M; Screaton N; Dixon AK; Ward LC; Elia M Int J Obes Relat Metab Disord; 1999 Dec; 23(12):1295-302. PubMed ID: 10643687 [TBL] [Abstract][Full Text] [Related]
75. Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model. van de Schoot AJ; Schooneveldt G; Wognum S; Hoogeman MS; Chai X; Stalpers LJ; Rasch CR; Bel A Med Phys; 2014 Mar; 41(3):031707. PubMed ID: 24593711 [TBL] [Abstract][Full Text] [Related]
76. Spatially varying accuracy and reproducibility of prostate segmentation in magnetic resonance images using manual and semiautomated methods. Shahedi M; Cool DW; Romagnoli C; Bauman GS; Bastian-Jordan M; Gibson E; Rodrigues G; Ahmad B; Lock M; Fenster A; Ward AD Med Phys; 2014 Nov; 41(11):113503. PubMed ID: 25370674 [TBL] [Abstract][Full Text] [Related]
77. Combined quantification of fatty infiltration, T Leporq B; Le Troter A; Le Fur Y; Salort-Campana E; Guye M; Beuf O; Attarian S; Bendahan D MAGMA; 2017 Aug; 30(4):407-415. PubMed ID: 28332039 [TBL] [Abstract][Full Text] [Related]
78. Fully automated prostate segmentation on MRI: comparison with manual segmentation methods and specimen volumes. Turkbey B; Fotin SV; Huang RJ; Yin Y; Daar D; Aras O; Bernardo M; Garvey BE; Weaver J; Haldankar H; Muradyan N; Merino MJ; Pinto PA; Periaswamy S; Choyke PL AJR Am J Roentgenol; 2013 Nov; 201(5):W720-9. PubMed ID: 24147502 [TBL] [Abstract][Full Text] [Related]
79. Deep learning for automatic segmentation of thigh and leg muscles. Agosti A; Shaqiri E; Paoletti M; Solazzo F; Bergsland N; Colelli G; Savini G; Muzic SI; Santini F; Deligianni X; Diamanti L; Monforte M; Tasca G; Ricci E; Bastianello S; Pichiecchio A MAGMA; 2022 Jun; 35(3):467-483. PubMed ID: 34665370 [TBL] [Abstract][Full Text] [Related]
80. [Rapid total body fat measurement by magnetic resonance imaging: quantification and topography]. Vogt FM; Ruehm S; Hunold P; de Greiff A; Nuefer M; Barkhausen J; Ladd SC Rofo; 2007 May; 179(5):480-6. PubMed ID: 17377875 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]