BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 28455685)

  • 1. Inferring Intracellular Signal Transduction Circuitry from Molecular Perturbation Experiments.
    Wynn ML; Egbert M; Consul N; Chang J; Wu ZF; Meravjer SD; Schnell S
    Bull Math Biol; 2018 May; 80(5):1310-1344. PubMed ID: 28455685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of cellular signal transduction networks using perturbation assays and linear programming.
    Knapp B; Kaderali L
    PLoS One; 2013; 8(7):e69220. PubMed ID: 23935958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating Bayesian variable selection with Modular Response Analysis to infer biochemical network topology.
    Santra T; Kolch W; Kholodenko BN
    BMC Syst Biol; 2013 Jul; 7():57. PubMed ID: 23829771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robustness analysis of the detailed kinetic model of an ErbB signaling network by using dynamic sensitivity.
    Masunaga H; Sugimoto Y; Magi S; Itasaki R; Okada-Hatakeyama M; Kurata H
    PLoS One; 2017; 12(5):e0178250. PubMed ID: 28542548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative pathway approach for automating analysis and validation of cell perturbation networks and design of perturbation experiments.
    Gong Y; Zhang Z
    Ann N Y Acad Sci; 2007 Dec; 1115():267-85. PubMed ID: 17925355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of mathematical models of signal transduction networks: simulation-based approach applied to EGF receptor signalling.
    Conzelmann H; Saez-Rodriguez J; Sauter T; Bullinger E; Allgöwer F; Gilles ED
    Syst Biol (Stevenage); 2004 Jun; 1(1):159-69. PubMed ID: 17052126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interleukin 6 inhibits proliferation and, in cooperation with an epidermal growth factor receptor autocrine loop, increases migration of T47D breast cancer cells.
    Badache A; Hynes NE
    Cancer Res; 2001 Jan; 61(1):383-91. PubMed ID: 11196191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. System theoretical investigation of human epidermal growth factor receptor-mediated signalling.
    Zhang Y; Shankaran H; Opresko L; Resat H
    IET Syst Biol; 2008 Sep; 2(5):273-84. PubMed ID: 19045822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The logic of EGFR/ErbB signaling: theoretical properties and analysis of high-throughput data.
    Samaga R; Saez-Rodriguez J; Alexopoulos LG; Sorger PK; Klamt S
    PLoS Comput Biol; 2009 Aug; 5(8):e1000438. PubMed ID: 19662154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A data-driven computational model of the ErbB receptor signaling network.
    Schoeberl B; Pace E; Howard S; Garantcharova V; Kudla A; Sorger PK; Nielsen UB
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():53-4. PubMed ID: 17946779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational discovery of dynamic cell line specific Boolean networks from multiplex time-course data.
    Razzaq M; Paulevé L; Siegel A; Saez-Rodriguez J; Bourdon J; Guziolowski C
    PLoS Comput Biol; 2018 Oct; 14(10):e1006538. PubMed ID: 30372442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT.
    Choudhary KS; Rohatgi N; Halldorsson S; Briem E; Gudjonsson T; Gudmundsson S; Rolfsson O
    PLoS Comput Biol; 2016 Jun; 12(6):e1004924. PubMed ID: 27253373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstructing signaling pathways from RNAi data using probabilistic Boolean threshold networks.
    Kaderali L; Dazert E; Zeuge U; Frese M; Bartenschlager R
    Bioinformatics; 2009 Sep; 25(17):2229-35. PubMed ID: 19542154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative modelling of the influence of MAPK network on cancer cell fate decision.
    Grieco L; Calzone L; Bernard-Pierrot I; Radvanyi F; Kahn-Perlès B; Thieffry D
    PLoS Comput Biol; 2013 Oct; 9(10):e1003286. PubMed ID: 24250280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of cell type-specific logic models of signaling networks using CellNOpt.
    Morris MK; Melas I; Saez-Rodriguez J
    Methods Mol Biol; 2013; 930():179-214. PubMed ID: 23086842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noise decomposition of intracellular biochemical signaling networks using nonequivalent reporters.
    Rhee A; Cheong R; Levchenko A
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):17330-5. PubMed ID: 25404303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paradoxical results in perturbation-based signaling network reconstruction.
    Prabakaran S; Gunawardena J; Sontag E
    Biophys J; 2014 Jun; 106(12):2720-8. PubMed ID: 24940789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological Network Inference and analysis using SEBINI and CABIN.
    Taylor R; Singhal M
    Methods Mol Biol; 2009; 541():551-76. PubMed ID: 19381531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CellFrame: a data structure for abstraction of cell biology experiments and construction of perturbation networks.
    Gong Y; Zhang Z
    Ann N Y Acad Sci; 2007 Dec; 1115():249-66. PubMed ID: 17925354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic analysis of the MAPK and PI3K/Akt signaling pathways.
    C V SB; Babar SM; Song EJ; Oh E; Yoo YS
    Mol Cells; 2008 May; 25(3):397-406. PubMed ID: 18443420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.