These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 28455766)

  • 1. Grasper having tactile sensing function using acoustic reflection for laparoscopic surgery.
    Ly HH; Tanaka Y; Fukuda T; Sano A
    Int J Comput Assist Radiol Surg; 2017 Aug; 12(8):1333-1343. PubMed ID: 28455766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stiffness Assessment and Lump Detection in Minimally Invasive Surgery Using In-House Developed Smart Laparoscopic Forceps.
    Othman W; Vandyck KE; Abril C; Barajas-Gamboa JS; Pantoja JP; Kroh M; Qasaimeh MA
    IEEE J Transl Eng Health Med; 2022; 10():2500410. PubMed ID: 35774413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A grasping forceps with a triaxial MEMS tactile sensor for quantification of stresses on organs.
    Kuwana K; Nakai A; Masamune K; Dohi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4490-3. PubMed ID: 24110731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tactile sensor using acoustic reflection for lump detection in laparoscopic surgery.
    Tanaka Y; Fukuda T; Fujiwara M; Sano A
    Int J Comput Assist Radiol Surg; 2015 Feb; 10(2):183-93. PubMed ID: 24801967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smart Laparoscopic Grasper Utilizing Force and Angle Sensors for Stiffness Assessment in Minimally Invasive Surgery
    Othman W; Qasaimeh MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7336-7339. PubMed ID: 34892792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial tactile sensing in minimally invasive surgery - a new technical approach.
    Schostek S; Ho CN; Kalanovic D; Schurr MO
    Minim Invasive Ther Allied Technol; 2006; 15(5):296-304. PubMed ID: 17062404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Articulated minimally invasive surgical instrument based on compliant mechanism.
    Arata J; Kogiso S; Sakaguchi M; Nakadate R; Oguri S; Uemura M; Byunghyun C; Akahoshi T; Ikeda T; Hashizume M
    Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1837-43. PubMed ID: 25698401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pneumatically driven surgical instrument capable of estimating translational force and grasping force.
    Miyazaki R; Kanno T; Kawashima K
    Int J Med Robot; 2019 Jun; 15(3):e1983. PubMed ID: 30648783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Softness sensing probe with multiple acoustic paths for laparoscopic surgery.
    Ukai T; Tanaka Y; Fukuda T; Kajikawa T; Miura H; Terada Y
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1537-1547. PubMed ID: 32514729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tactile sensor using the acoustic reflection principle for assessing the contact force component in laparoscopic tumor localization.
    Ly HH; Tanaka Y; Fujiwara M
    Int J Comput Assist Radiol Surg; 2021 Feb; 16(2):289-299. PubMed ID: 33389604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Performance of a Low-Cost Telemetric Laparoscopic Tactile Grasper.
    Schostek S; Zimmermann M; Schurr MO; Prosst RL
    Surg Innov; 2016 Jun; 23(3):291-7. PubMed ID: 26546367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of laparoscopic forceps jaw contact pressure and distribution using pressure sensitive film.
    Zhu R; Maréchal M; Yamamoto I; Lawn MJ; Nagayasu T; Matsumoto K
    Comput Assist Surg (Abingdon); 2019 Oct; 24(sup2):105-116. PubMed ID: 31464146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A remote palpation instrument for laparoscopic surgery: design and performance.
    Ottermo MV; Stavdahl Ø; Johansen TA
    Minim Invasive Ther Allied Technol; 2009; 18(5):259-72. PubMed ID: 19711224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smart laparoscopic grasper integrated with fiber Bragg grating based tactile sensor for real-time force feedback.
    Wang P; Zhang S; Liu Z; Huang Y; Huang J; Huang X; Chen J; Fang B; Peng D
    J Biophotonics; 2022 May; 15(5):e202100331. PubMed ID: 35020276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery.
    Moradi Dalvand M; Shirinzadeh B; Shamdani AH; Smith J; Zhong Y
    Int J Med Robot; 2014 Mar; 10(1):11-21. PubMed ID: 23640908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force-adjustable parallel-occlusion grasper.
    Khan H; Coleman S; Cuschieri A
    Int J Surg; 2024 Feb; 110(2):750-757. PubMed ID: 37995091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating tactile feedback in robotic surgery for potential clinical application using an animal model.
    Wottawa CR; Genovese B; Nowroozi BN; Hart SD; Bisley JW; Grundfest WS; Dutson EP
    Surg Endosc; 2016 Aug; 30(8):3198-209. PubMed ID: 26514132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force-feedback grasper helps restore sense of touch in minimally invasive surgery.
    MacFarlane M; Rosen J; Hannaford B; Pellegrini C; Sinanan M
    J Gastrointest Surg; 1999; 3(3):278-85. PubMed ID: 10481120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A triple-jaw actuated and sensorized instrument for grasping large organs during minimally invasive robotic surgery.
    Mirbagheri A; Farahmand F
    Int J Med Robot; 2013 Mar; 9(1):83-93. PubMed ID: 22576714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Output force and ratio of laparoscopic graspers: an evaluation of operating room ergonomics.
    Olig EM; Wilson S; Reddy M
    Am J Obstet Gynecol; 2023 Sep; 229(3):307.e1-307.e9. PubMed ID: 37201694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.