These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28456035)

  • 21. Iron redox transformations in continuously photolyzed acidic solutions containing natural organic matter: kinetic and mechanistic insights.
    Garg S; Jiang C; Miller CJ; Rose AL; Waite TD
    Environ Sci Technol; 2013 Aug; 47(16):9190-7. PubMed ID: 23879362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of iron ion on doxycycline photocatalytic and Fenton-based autocatatalytic decomposition.
    Bolobajev J; Trapido M; Goi A
    Chemosphere; 2016 Jun; 153():220-6. PubMed ID: 27016818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron(III)-induced photooxidation of arsenite in the presence of carboxylic acids and phenols as model compounds of natural organic matter.
    Huang X; Peng Y; Xu J; Wu F; Mailhot G
    Chemosphere; 2021 Jan; 263():128142. PubMed ID: 33297130
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photochemical oxidation of As(III) by vacuum-UV lamp irradiation.
    Yoon SH; Lee JH; Oh S; Yang JE
    Water Res; 2008 Jul; 42(13):3455-63. PubMed ID: 18514252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photooxidation of arsenite under 254 nm irradiation with a quantum yield higher than unity.
    Ryu J; Monllor-Satoca D; Kim DH; Yeo J; Choi W
    Environ Sci Technol; 2013 Aug; 47(16):9381-7. PubMed ID: 23879475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of UV-irradiated Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton systems to degrade model and natural occurring naphthenic acids.
    Zhang Y; Chelme-Ayala P; Klamerth N; Gamal El-Din M
    Chemosphere; 2017 Jul; 179():359-366. PubMed ID: 28388447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contribution of fulvic acid to the photochemical formation of Fe(II) in acidic Suwannee River fulvic acid solutions.
    Arakaki T; Saito K; Okada K; Nakajima H; Hitomi Y
    Chemosphere; 2010 Feb; 78(8):1023-7. PubMed ID: 20056515
    [TBL] [Abstract][Full Text] [Related]  

  • 28. EXAFS study on the reactions between iron and fulvic acid in acid aqueous solutions.
    van Schaik JW; Persson I; Kleja DB; Gustafsson JP
    Environ Sci Technol; 2008 Apr; 42(7):2367-73. PubMed ID: 18504967
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arsenic(III) and iron(II) co-oxidation by oxygen and hydrogen peroxide: divergent reactions in the presence of organic ligands.
    Wang Z; Bush RT; Liu J
    Chemosphere; 2013 Nov; 93(9):1936-41. PubMed ID: 23880239
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of albumin, transferrin and humic-like substances on iron-mediated OH radical formation in human lung fluids.
    Gonzalez DH; Diaz DA; Baumann JP; Ghio AJ; Paulson SE
    Free Radic Biol Med; 2021 Mar; 165():79-87. PubMed ID: 33486087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Degradation of herbicide 2,4-dichlorophenoxybutanoic acid in the photolysis of [FeOH]2+ and [Fe(Ox)3]3- complexes: A mechanistic study.
    Pozdnyakov I; Sherin P; Grivin V; Plyusnin V
    Chemosphere; 2016 Mar; 146():280-8. PubMed ID: 26735728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photochemical acetochlor degradation induced by hydroxyl radical in Fe-amended wetland waters: Impact of pH and dissolved organic matter.
    Yuan C; Chin YP; Weavers LK
    Water Res; 2018 Apr; 132():52-60. PubMed ID: 29306699
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?
    Pédrot M; Le Boudec A; Davranche M; Dia A; Henin O
    J Colloid Interface Sci; 2011 Jul; 359(1):75-85. PubMed ID: 21482426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photooxidation-induced changes in optical, electrochemical, and photochemical properties of humic substances.
    Sharpless CM; Aeschbacher M; Page SE; Wenk J; Sander M; McNeill K
    Environ Sci Technol; 2014; 48(5):2688-96. PubMed ID: 24383955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectroscopic evidence for ternary complex formation between arsenate and ferric iron complexes of humic substances.
    Mikutta C; Kretzschmar R
    Environ Sci Technol; 2011 Nov; 45(22):9550-7. PubMed ID: 21985502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How to measure quantum yield of hydroxyl radical during photolysis of natural Fe(III) carboxylates?
    Tyutereva YE; Novikov MV; Snytnikova OA; Pozdnyakov IP
    Chemosphere; 2022 Jul; 298():134237. PubMed ID: 35259360
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tartaric acid-induced photoreductive dissolution of schwertmannite loaded with As(III) and the release of adsorbed As(III).
    Zhang J; Li W; Li Y; Zhou L; Lan Y
    Environ Pollut; 2019 Feb; 245():711-718. PubMed ID: 30500750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photocatalytic oxidation mechanism of As(III) on TiO2: unique role of As(III) as a charge recombinant species.
    Choi W; Yeo J; Ryu J; Tachikawa T; Majima T
    Environ Sci Technol; 2010 Dec; 44(23):9099-104. PubMed ID: 21062045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O(2) via Fe(2+)-mediated reactions.
    Ona-Nguema G; Morin G; Wang Y; Foster AL; Juillot F; Calas G; Brown GE
    Environ Sci Technol; 2010 Jul; 44(14):5416-22. PubMed ID: 20666402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental determination and modeling of arsenic complexation with humic and fulvic acids.
    Fakour H; Lin TF
    J Hazard Mater; 2014 Aug; 279():569-78. PubMed ID: 25108831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.