These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28456035)

  • 61. Photochemical cycling of iron mediated by dicarboxylates: special effect of malonate.
    Wang Z; Chen X; Ji H; Ma W; Chen C; Zhao J
    Environ Sci Technol; 2010 Jan; 44(1):263-8. PubMed ID: 20000366
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Role of Fe(II), phosphate, silicate, sulfate, and carbonate in arsenic uptake by coprecipitation in synthetic and natural groundwater.
    Ciardelli MC; Xu H; Sahai N
    Water Res; 2008 Feb; 42(3):615-24. PubMed ID: 17919678
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Degradation of dimethyl phthalate through Fe(II)/peroxymonosulphate heightened by fulvic acid: efficiency and possible mechanism.
    Ding Y; Zhang M; Zhou S; Xie L; Li A; Wang P
    Environ Technol; 2023 May; 44(12):1850-1862. PubMed ID: 34873993
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Photodegradation of gallic acid under UV irradiation: insights regarding the pH effect on direct photolysis and the ROS oxidation-sensitized process of DOM.
    Du Y; Chen H; Zhang Y; Chang Y
    Chemosphere; 2014 Mar; 99():254-60. PubMed ID: 24290297
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Reductive and oxidative degradation of iopamidol, iodinated X-ray contrast media, by Fe(III)-oxalate under UV and visible light treatment.
    Zhao C; Arroyo-Mora LE; DeCaprio AP; Sharma VK; Dionysiou DD; O'Shea KE
    Water Res; 2014 Dec; 67():144-53. PubMed ID: 25269106
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A speciation methodology to study the contributions of humic-like and fulvic-like acids to the mobilization of metals from compost using size exclusion chromatography-ultraviolet absorption-inductively coupled plasma mass spectrometry and deconvolution analysis.
    Laborda F; Bolea E; Górriz MP; Martín-Ruiz MP; Ruiz-Beguería S; Castillo JR
    Anal Chim Acta; 2008 Jan; 606(1):1-8. PubMed ID: 18068764
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Simultaneous photocatalytic reduction of Cr(VI) and oxidation of bisphenol A induced by Fe(III)-OH complexes in water.
    Liu Y; Deng L; Chen Y; Wu F; Deng N
    J Hazard Mater; 2007 Jan; 139(2):399-402. PubMed ID: 16844289
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Degradation of bisphenol A in water by Fe(III)/UVA and Fe(III)/polycarboxylate/UVA photocatalysis.
    Alvarez PM; Rodríguez EM; Fernández G; Beltrán FJ
    Water Sci Technol; 2010; 61(11):2717-22. PubMed ID: 20489243
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Influence of fulvic acid on the colloidal stability and reactivity of nanoscale zero-valent iron.
    Dong H; Ahmad K; Zeng G; Li Z; Chen G; He Q; Xie Y; Wu Y; Zhao F; Zeng Y
    Environ Pollut; 2016 Apr; 211():363-9. PubMed ID: 26796746
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Photochemistry of the [Fe4(mu3-S)3(NO)7]- complex in the presence of S-nucleophiles: a spectroscopic study.
    Chmura A; Szaciłowski K; Waksmundzka-Góra A; Stasicka Z
    Nitric Oxide; 2006 May; 14(3):247-60. PubMed ID: 16337819
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Optimization of naproxen and ibuprofen removal in photolysis using a Box-Behnken design: effect of Fe(III), NO3-, and humic acid.
    Im JK; Yoon Y; Zoh KD
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(4):422-33. PubMed ID: 24345240
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Impact of pH on Iron Redox Transformations in Simulated Freshwaters Containing Natural Organic Matter.
    Garg S; Jiang C; Waite TD
    Environ Sci Technol; 2018 Nov; 52(22):13184-13194. PubMed ID: 30362718
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Photolysis of Fe(III) complex with ethylenediamine-N,N'-disuccinic acid and its efficiency in generation of
    Belikov YA; Snytnikova OA; Grivin VP; Plyusnin VF; Xu J; Wu F; Pozdnyakov IP
    Chemosphere; 2022 Dec; 309(Pt 1):136657. PubMed ID: 36191772
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Low levels of iron enhance UV/H
    Ulliman SL; McKay G; Rosario-Ortiz FL; Linden KG
    Water Res; 2018 Mar; 130():234-242. PubMed ID: 29227872
    [TBL] [Abstract][Full Text] [Related]  

  • 75. HULIS Enhancement of Hydroxyl Radical Formation from Fe(II): Kinetics of Fulvic Acid-Fe(II) Complexes in the Presence of Lung Antioxidants.
    Gonzalez DH; Cala CK; Peng Q; Paulson SE
    Environ Sci Technol; 2017 Jul; 51(13):7676-7685. PubMed ID: 28581715
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Temperature dependence of hydroxyl radical formation in the hv/Fe3+/H2O2 and Fe3+/H2O2 systems.
    Lee C; Yoon J
    Chemosphere; 2004 Sep; 56(10):923-34. PubMed ID: 15268958
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Iodide-mediated photooxidation of arsenite under 254 nm irradiation.
    Yeo J; Choi W
    Environ Sci Technol; 2009 May; 43(10):3784-8. PubMed ID: 19544888
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Co-oxidation of As(III) and Fe(II) by oxygen through complexation between As(III) and Fe(II)/Fe(III) species.
    Ding W; Xu J; Chen T; Liu C; Li J; Wu F
    Water Res; 2018 Oct; 143():599-607. PubMed ID: 30025352
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Role of Fe(III)-carboxylates in AMZ photodegradation: A response surface study based on a Doehlert experimental design.
    Graça CAL; Correia de Velosa A; Teixeira ACSC
    Chemosphere; 2017 Oct; 184():981-991. PubMed ID: 28658741
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Electrochemical mineralization of the azo dye Acid Red 29 (Chromotrope 2R) by photoelectro-Fenton process.
    Almeida LC; Garcia-Segura S; Arias C; Bocchi N; Brillas E
    Chemosphere; 2012 Oct; 89(6):751-8. PubMed ID: 22854020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.