BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28456166)

  • 1. Modular topology emerges from plasticity in a minimalistic excitable network model.
    Damicelli F; Hilgetag CC; Hütt MT; Messé A
    Chaos; 2017 Apr; 27(4):047406. PubMed ID: 28456166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical organization unveiled by functional connectivity in complex brain networks.
    Zhou C; Zemanová L; Zamora G; Hilgetag CC; Kurths J
    Phys Rev Lett; 2006 Dec; 97(23):238103. PubMed ID: 17280251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using the virtual brain to reveal the role of oscillations and plasticity in shaping brain's dynamical landscape.
    Roy D; Sigala R; Breakspear M; McIntosh AR; Jirsa VK; Deco G; Ritter P
    Brain Connect; 2014 Dec; 4(10):791-811. PubMed ID: 25131838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From the statistics of connectivity to the statistics of spike times in neuronal networks.
    Ocker GK; Hu Y; Buice MA; Doiron B; Josić K; Rosenbaum R; Shea-Brown E
    Curr Opin Neurobiol; 2017 Oct; 46():109-119. PubMed ID: 28863386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaos and Correlated Avalanches in Excitatory Neural Networks with Synaptic Plasticity.
    Pittorino F; Ibáñez-Berganza M; di Volo M; Vezzani A; Burioni R
    Phys Rev Lett; 2017 Mar; 118(9):098102. PubMed ID: 28306273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topological reinforcement as a principle of modularity emergence in brain networks.
    Damicelli F; Hilgetag CC; Hütt MT; Messé A
    Netw Neurosci; 2019; 3(2):589-605. PubMed ID: 31157311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity-Driven Self-Organization under Topological Constraints Accounts for Non-random Features of Cortical Synaptic Wiring.
    Miner D; Triesch J
    PLoS Comput Biol; 2016 Feb; 12(2):e1004759. PubMed ID: 26866369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local inhibitory plasticity tunes macroscopic brain dynamics and allows the emergence of functional brain networks.
    Hellyer PJ; Jachs B; Clopath C; Leech R
    Neuroimage; 2016 Jan; 124(Pt A):85-95. PubMed ID: 26348562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of neuronal death and network recovery in a computational model of distributed cortical activity.
    Rubinov M; McIntosh AR; Valenzuela MJ; Breakspear M
    Am J Geriatr Psychiatry; 2009 Mar; 17(3):210-7. PubMed ID: 19001355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward a theory of coactivation patterns in excitable neural networks.
    Messé A; Hütt MT; Hilgetag CC
    PLoS Comput Biol; 2018 Apr; 14(4):e1006084. PubMed ID: 29630592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchy and polysynchrony in an adaptive network.
    Botella-Soler V; Glendinning P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062809. PubMed ID: 25019835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symbiotic relationship between brain structure and dynamics.
    Rubinov M; Sporns O; van Leeuwen C; Breakspear M
    BMC Neurosci; 2009 Jun; 10():55. PubMed ID: 19486538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of excitable dynamics in hierarchical biological networks.
    Müller-Linow M; Hilgetag CC; Hütt MT
    PLoS Comput Biol; 2008 Sep; 4(9):e1000190. PubMed ID: 18818769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hebbian Wiring Plasticity Generates Efficient Network Structures for Robust Inference with Synaptic Weight Plasticity.
    Hiratani N; Fukai T
    Front Neural Circuits; 2016; 10():41. PubMed ID: 27303271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hopf bifurcation in the evolution of networks driven by spike-timing-dependent plasticity.
    Ren Q; Kolwankar KM; Samal A; Jost J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056103. PubMed ID: 23214839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related changes in modular organization of human brain functional networks.
    Meunier D; Achard S; Morcom A; Bullmore E
    Neuroimage; 2009 Feb; 44(3):715-23. PubMed ID: 19027073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: structuring synaptic pathways among recurrent connections.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Dec; 101(5-6):427-44. PubMed ID: 19937070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relation between structural and functional connectivity patterns in complex brain networks.
    Stam CJ; van Straaten EC; Van Dellen E; Tewarie P; Gong G; Hillebrand A; Meier J; Van Mieghem P
    Int J Psychophysiol; 2016 May; 103():149-60. PubMed ID: 25678023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does the regulation of local excitation-inhibition balance aid in recovery of functional connectivity? A computational account.
    Vattikonda A; Surampudi BR; Banerjee A; Deco G; Roy D
    Neuroimage; 2016 Aug; 136():57-67. PubMed ID: 27177761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule.
    Liu H; Song Y; Xue F; Li X
    Chaos; 2015 Nov; 25(11):113108. PubMed ID: 26627568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.