These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28456182)

  • 1. Molecular dynamics simulation of nanobubble nucleation on rough surfaces.
    Liu Y; Zhang X
    J Chem Phys; 2017 Apr; 146(16):164704. PubMed ID: 28456182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface.
    Koishi T; Yasuoka K; Fujikawa S; Ebisuzaki T; Zeng XC
    Proc Natl Acad Sci U S A; 2009 May; 106(21):8435-40. PubMed ID: 19429707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of droplet wetting mode transitions on grooved surfaces: forward flux sampling.
    Shahraz A; Borhan A; Fichthorn KA
    Langmuir; 2014 Dec; 30(51):15442-50. PubMed ID: 25470510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A unified mechanism for the stability of surface nanobubbles: contact line pinning and supersaturation.
    Liu Y; Zhang X
    J Chem Phys; 2014 Oct; 141(13):134702. PubMed ID: 25296823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress in understanding wetting transitions on rough surfaces.
    Bormashenko E
    Adv Colloid Interface Sci; 2015 Aug; 222():92-103. PubMed ID: 24594103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The wetting characteristics of aluminum droplets on rough surfaces with molecular dynamics simulations.
    Guan C; Lv X; Han Z; Chen C
    Phys Chem Chem Phys; 2020 Jan; 22(4):2361-2371. PubMed ID: 31934698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Nanodroplet Sizes on Wettability, Electrowetting Transition, and Spontaneous Dewetting Transition on Nanopillar-Arrayed Surfaces.
    He X; Wang YF; Zhang BX; Wang SL; Yang YR; Wang XD; Lee DJ
    Langmuir; 2021 Dec; 37(50):14571-14581. PubMed ID: 34894696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition between superhydrophobic states on rough surfaces.
    Patankar NA
    Langmuir; 2004 Aug; 20(17):7097-102. PubMed ID: 15301493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow.
    Shigorina E; Kordilla J; Tartakovsky AM
    Phys Rev E; 2017 Sep; 96(3-1):033115. PubMed ID: 29346900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation.
    Yaghoubi H; Foroutan M
    Phys Chem Chem Phys; 2018 Aug; 20(34):22308-22319. PubMed ID: 30124704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid-vapor transition on patterned solid surfaces in a shear flow.
    Yao W; Ren W
    J Chem Phys; 2015 Dec; 143(24):244701. PubMed ID: 26723696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the wetting transition of a liquid droplet sitting on a square-array cosine wave-like patterned surface.
    Promraksa A; Chuang YC; Chen LJ
    J Colloid Interface Sci; 2014 Mar; 418():8-19. PubMed ID: 24461812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wetting on Micropatterned Surfaces: Partial Penetration in the Cassie State and Wenzel Deviation Theoretically Explained.
    Rohrs C; Azimi A; He P
    Langmuir; 2019 Nov; 35(47):15421-15430. PubMed ID: 31663751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activated Wetting of Nanostructured Surfaces: Reaction Coordinates, Finite Size Effects, and Simulation Pitfalls.
    Amabili M; Meloni S; Giacomello A; Casciola CM
    J Phys Chem B; 2018 Jan; 122(1):200-212. PubMed ID: 29200302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slippery Wenzel State.
    Dai X; Stogin BB; Yang S; Wong TS
    ACS Nano; 2015 Sep; 9(9):9260-7. PubMed ID: 26302154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling states of water droplets on nanostructured surfaces by design.
    Zhu C; Gao Y; Huang Y; Li H; Meng S; Francisco JS; Zeng XC
    Nanoscale; 2017 Nov; 9(46):18240-18245. PubMed ID: 29104978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition.
    Liu G; Fu L; Rode AV; Craig VS
    Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consolidation of hydrophobic transition criteria by using an approximate energy minimization approach.
    Patankar NA
    Langmuir; 2010 Jun; 26(11):8941-5. PubMed ID: 20158175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.