These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28456183)

  • 1. Energy-based truncation of multi-determinant wavefunctions in quantum Monte Carlo.
    Per MC; Cleland DM
    J Chem Phys; 2017 Apr; 146(16):164101. PubMed ID: 28456183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of single particle orbital sets and configuration selection on multideterminant wavefunctions in quantum Monte Carlo.
    Clay RC; Morales MA
    J Chem Phys; 2015 Jun; 142(23):234103. PubMed ID: 26093546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Monte Carlo with very large multideterminant wavefunctions.
    Scemama A; Applencourt T; Giner E; Caffarel M
    J Comput Chem; 2016 Jul; 37(20):1866-75. PubMed ID: 27302337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion Monte Carlo method on small boron clusters using single- and multi- determinant-Jastrow trial wavefunctions.
    Peng Y; Zhou X; Wang Z; Wang F
    J Chem Phys; 2021 Jan; 154(2):024301. PubMed ID: 33445915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward a systematic improvement of the fixed-node approximation in diffusion Monte Carlo for solids-A case study in diamond.
    Benali A; Gasperich K; Jordan KD; Applencourt T; Luo Y; Bennett MC; Krogel JT; Shulenburger L; Kent PRC; Loos PF; Scemama A; Caffarel M
    J Chem Phys; 2020 Nov; 153(18):184111. PubMed ID: 33187421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Jastrow trial wavefunctions for electronic structure calculations with quantum Monte Carlo.
    Bouabça T; Braïda B; Caffarel M
    J Chem Phys; 2010 Jul; 133(4):044111. PubMed ID: 20687637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion quantum Monte Carlo method on diradicals using single- and multi-determinant-Jastrow trial wavefunctions and different orbitals.
    Rao L; Wang F
    J Chem Phys; 2022 Mar; 156(12):124308. PubMed ID: 35364895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fixed-node diffusion Monte Carlo potential energy curve of the fluorine molecule F2 using selected configuration interaction trial wavefunctions.
    Giner E; Scemama A; Caffarel M
    J Chem Phys; 2015 Jan; 142(4):044115. PubMed ID: 25637977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo.
    Filippi C; Assaraf R; Moroni S
    J Chem Phys; 2016 May; 144(19):194105. PubMed ID: 27208934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The quantum Monte Carlo method-electron correlation from random numbers (abstract only).
    Needs R
    J Phys Condens Matter; 2008 Feb; 20(6):064204. PubMed ID: 21693866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of quantum Monte Carlo for calculating molecular bond lengths.
    Cleland DM; Per MC
    J Chem Phys; 2016 Mar; 144(12):124108. PubMed ID: 27036428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociation energy of the water dimer from quantum Monte Carlo calculations.
    Gurtubay IG; Needs RJ
    J Chem Phys; 2007 Sep; 127(12):124306. PubMed ID: 17902902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-orthogonal multi-Slater determinant expansions in auxiliary field quantum Monte Carlo.
    Landinez Borda EJ; Gomez J; Morales MA
    J Chem Phys; 2019 Feb; 150(7):074105. PubMed ID: 30795651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An explicitly correlated approach to basis set incompleteness in full configuration interaction quantum Monte Carlo.
    Booth GH; Cleland D; Alavi A; Tew DP
    J Chem Phys; 2012 Oct; 137(16):164112. PubMed ID: 23126700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isomerization of bicyclo[1.1.0]butane by means of the diffusion quantum Monte Carlo method.
    Berner R; Lüchow A
    J Phys Chem A; 2010 Dec; 114(50):13222-7. PubMed ID: 21121681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Monte Carlo calculation of the binding energy of the beryllium dimer.
    Deible MJ; Kessler M; Gasperich KE; Jordan KD
    J Chem Phys; 2015 Aug; 143(8):084116. PubMed ID: 26328827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excited-State Diffusion Monte Carlo Calculations: A Simple and Efficient Two-Determinant Ansatz.
    Blunt NS; Neuscamman E
    J Chem Theory Comput; 2019 Jan; 15(1):178-189. PubMed ID: 30525592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systematic construction of configuration interaction wavefunctions in the complete CI space.
    Prentice AW; Coe JP; Paterson MJ
    J Chem Phys; 2019 Oct; 151(16):164112. PubMed ID: 31675885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliable radical stabilization energies from diffusion Monte Carlo calculations.
    Per MC; Fletcher EK; Swann ET; Cleland DM
    J Comput Chem; 2020 Oct; 41(27):2378-2382. PubMed ID: 32780429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An excited-state approach within full configuration interaction quantum Monte Carlo.
    Blunt NS; Smart SD; Booth GH; Alavi A
    J Chem Phys; 2015 Oct; 143(13):134117. PubMed ID: 26450302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.