BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 28456238)

  • 1. A direct differential method for measuring thermal conductivity of thin films.
    Zeng Y; Marconnet A
    Rev Sci Instrum; 2017 Apr; 88(4):044901. PubMed ID: 28456238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple differential steady-state method to measure the thermal conductivity of solid bulk materials with high accuracy.
    Kraemer D; Chen G
    Rev Sci Instrum; 2014 Feb; 85(2):025108. PubMed ID: 24593397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film.
    Chien HC; Yao DJ; Huang MJ; Chang TY
    Rev Sci Instrum; 2008 May; 79(5):054902. PubMed ID: 18513085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous measurement of in-plane and through-plane thermal conductivity using beam-offset frequency domain thermoreflectance.
    Rodin D; Yee SK
    Rev Sci Instrum; 2017 Jan; 88(1):014902. PubMed ID: 28147667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method.
    Liu J; Zhu J; Tian M; Gu X; Schmidt A; Yang R
    Rev Sci Instrum; 2013 Mar; 84(3):034902. PubMed ID: 23556838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adapting the Electron Beam from SEM as a Quantitative Heating Source for Nanoscale Thermal Metrology.
    Yuan P; Wu JY; Ogletree DF; Urban JJ; Dames C; Ma Y
    Nano Lett; 2020 May; 20(5):3019-3029. PubMed ID: 32267709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Heater Structures for Thermal Conductivity Measurements of SiO
    Kühnel F; Metzke C; Weber J; Schätz J; Duesberg GS; Benstetter G
    Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a rigid suspended micro-island device and robust measurement method for thermal transport measurements.
    Nguyen AT; Jones C; Lee W
    Rev Sci Instrum; 2020 Dec; 91(12):124902. PubMed ID: 33379998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modified data analysis for thermal conductivity measurements of polycrystalline silicon microbridges using a steady state Joule heating technique.
    Sayer RA; Piekos ES; Phinney LM
    Rev Sci Instrum; 2012 Dec; 83(12):124904. PubMed ID: 23278015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A "2-omega" technique for measuring anisotropy of thermal conductivity.
    Ramu AT; Bowers JE
    Rev Sci Instrum; 2012 Dec; 83(12):124903. PubMed ID: 23278014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous measurements of the specific heat and thermal conductivity of suspended thin samples by transient electrothermal method.
    Feng B; Ma W; Li Z; Zhang X
    Rev Sci Instrum; 2009 Jun; 80(6):064901. PubMed ID: 19566218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous Carbon Nanotube-Based Fibers and Films for Applications Requiring Enhanced Heat Dissipation.
    Liu P; Fan Z; Mikhalchan A; Tran TQ; Jewell D; Duong HM; Marconnet AM
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17461-71. PubMed ID: 27322344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate measurement of in-plane thermal conductivity of layered materials without metal film transducer using frequency domain thermoreflectance.
    Qian X; Ding Z; Shin J; Schmidt AJ; Chen G
    Rev Sci Instrum; 2020 Jun; 91(6):064903. PubMed ID: 32611038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.
    Liang XM; Ding W; Chen HH; Shu Z; Zhao G; Zhang HF; Gao D
    Biomed Microdevices; 2011 Oct; 13(5):923-8. PubMed ID: 21710370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of setup for high temperature thermal conductivity measurement.
    Patel A; Pandey SK
    Rev Sci Instrum; 2017 Jan; 88(1):015107. PubMed ID: 28147671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Note: Thermal conductivity measurement of individual poly(ether ketone)/carbon nanotube fibers using a steady-state dc thermal bridge method.
    Moon J; Weaver K; Feng B; Chae HG; Kumar S; Baek JB; Peterson GP
    Rev Sci Instrum; 2012 Jan; 83(1):016103. PubMed ID: 22299999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A noncontact thermal microprobe for local thermal conductivity measurement.
    Zhang Y; Castillo EE; Mehta RJ; Ramanath G; Borca-Tasciuc T
    Rev Sci Instrum; 2011 Feb; 82(2):024902. PubMed ID: 21361625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic thermal conductivity measurement using a new Asymmetric-Beam Time-Domain Thermoreflectance (AB-TDTR) method.
    Li M; Kang JS; Hu Y
    Rev Sci Instrum; 2018 Aug; 89(8):084901. PubMed ID: 30184688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the thermophysical properties of self-suspended thin films based on steady-state thermography.
    Wang X; Zhao Q; Li Z; Yang S; Zhang J
    Opt Express; 2020 May; 28(10):14560-14572. PubMed ID: 32403494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction and Increase in Thermal Conductivity of Si Irradiated with Ga
    Alaie S; Baboly MG; Jiang YB; Rempe S; Anjum DH; Chaieb S; Donovan BF; Giri A; Szwejkowski CJ; Gaskins JT; Elahi MMM; Goettler DF; Braun J; Hopkins PE; Leseman ZC
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37679-37684. PubMed ID: 30280889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.