These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 28456243)
1. Measurement of the in-plane thermal conductivity by steady-state infrared thermography. Greppmair A; Stoib B; Saxena N; Gerstberger C; Müller-Buschbaum P; Stutzmann M; Brandt MS Rev Sci Instrum; 2017 Apr; 88(4):044903. PubMed ID: 28456243 [TBL] [Abstract][Full Text] [Related]
2. Measurement of the thermophysical properties of self-suspended thin films based on steady-state thermography. Wang X; Zhao Q; Li Z; Yang S; Zhang J Opt Express; 2020 May; 28(10):14560-14572. PubMed ID: 32403494 [TBL] [Abstract][Full Text] [Related]
5. Bulk-like Intrinsic Phonon Thermal Conductivity of Micrometer-Thick AlN Films. Koh YR; Cheng Z; Mamun A; Bin Hoque MS; Liu Z; Bai T; Hussain K; Liao ME; Li R; Gaskins JT; Giri A; Tomko J; Braun JL; Gaevski M; Lee E; Yates L; Goorsky MS; Luo T; Khan A; Graham S; Hopkins PE ACS Appl Mater Interfaces; 2020 Jul; 12(26):29443-29450. PubMed ID: 32491824 [TBL] [Abstract][Full Text] [Related]
6. Anisotropic temperature-dependent thermal conductivity by an Al Lee WY; Lee JH; Ahn JY; Park TH; Park NW; Kim GS; Park JS; Lee SK Nanotechnology; 2017 Mar; 28(10):105401. PubMed ID: 28145279 [TBL] [Abstract][Full Text] [Related]
7. Effect of Thickness of Single-Phase Antimony and Tellurium Thin Films on Their Thermal Conductivities. Park NW; Park SI; Lee SK J Nanosci Nanotechnol; 2015 Sep; 15(9):6729-33. PubMed ID: 26716236 [TBL] [Abstract][Full Text] [Related]
8. Reduced temperature-dependent thermal conductivity of magnetite thin films by controlling film thickness. Park NW; Lee WY; Kim JA; Song K; Lim H; Kim WD; Yoon SG; Lee SK Nanoscale Res Lett; 2014 Feb; 9(1):96. PubMed ID: 24571956 [TBL] [Abstract][Full Text] [Related]
9. Phonon and Thermal Properties of Quasi-Two-Dimensional FePS Kargar F; Coleman EA; Ghosh S; Lee J; Gomez MJ; Liu Y; Magana AS; Barani Z; Mohammadzadeh A; Debnath B; Wilson RB; Lake RK; Balandin AA ACS Nano; 2020 Feb; 14(2):2424-2435. PubMed ID: 31951116 [TBL] [Abstract][Full Text] [Related]
10. Thickness-dependent in-plane thermal conductivity of suspended MoS Bae JJ; Jeong HY; Han GH; Kim J; Kim H; Kim MS; Moon BH; Lim SC; Lee YH Nanoscale; 2017 Feb; 9(7):2541-2547. PubMed ID: 28150838 [TBL] [Abstract][Full Text] [Related]
11. Measurement of Lateral and Interfacial Thermal Conductivity of Single- and Bilayer MoS2 and MoSe2 Using Refined Optothermal Raman Technique. Zhang X; Sun D; Li Y; Lee GH; Cui X; Chenet D; You Y; Heinz TF; Hone JC ACS Appl Mater Interfaces; 2015 Nov; 7(46):25923-9. PubMed ID: 26517143 [TBL] [Abstract][Full Text] [Related]
12. New device and method for measuring thermal conductivity of thin-films. Subramanian CS; Amer T; UpChurch BT; Alderfer DW; Burkett C; Sealey B ISA Trans; 2006 Jul; 45(3):313-8. PubMed ID: 16856629 [TBL] [Abstract][Full Text] [Related]
13. Thermal conductivity measurements of high and low thermal conductivity films using a scanning hot probe method in the 3ω mode and novel calibration strategies. Wilson AA; Muñoz Rojo M; Abad B; Perez JA; Maiz J; Schomacker J; Martín-Gonzalez M; Borca-Tasciuc DA; Borca-Tasciuc T Nanoscale; 2015 Oct; 7(37):15404-12. PubMed ID: 26335503 [TBL] [Abstract][Full Text] [Related]
14. Influence of chemical ordering on the thermal conductivity and electronic relaxation in FePt thin films in heat assisted magnetic recording applications. Giri A; Wee SH; Jain S; Hellwig O; Hopkins PE Sci Rep; 2016 Aug; 6():32077. PubMed ID: 27561236 [TBL] [Abstract][Full Text] [Related]
15. Quantifying non-contact tip-sample thermal exchange parameters for accurate scanning thermal microscopy with heated microprobes. Wilson AA; Borca-Tasciuc T Rev Sci Instrum; 2017 Jul; 88(7):074903. PubMed ID: 28764517 [TBL] [Abstract][Full Text] [Related]
16. Thermal and electrical cross-plane conductivity at the nanoscale in poly(3,4-ethylenedioxythiophene):trifluoromethanesulfonate thin films. Kondratenko K; Guérin D; Wallart X; Lenfant S; Vuillaume D Nanoscale; 2022 Apr; 14(16):6075-6084. PubMed ID: 35383814 [TBL] [Abstract][Full Text] [Related]
17. A frequency-domain thermoreflectance method for the characterization of thermal properties. Schmidt AJ; Cheaito R; Chiesa M Rev Sci Instrum; 2009 Sep; 80(9):094901. PubMed ID: 19791955 [TBL] [Abstract][Full Text] [Related]
18. Thermal-Conductivity Apparatus for Steady-State, Comparative Measurement of Ceramic Coatings. Slifka AJ J Res Natl Inst Stand Technol; 2000; 105(4):591-605. PubMed ID: 27551628 [TBL] [Abstract][Full Text] [Related]
19. Thermal conductivity measurement of thin films by a dc method. Yang J; Zhang J; Zhang H; Zhu Y Rev Sci Instrum; 2010 Nov; 81(11):114902. PubMed ID: 21133491 [TBL] [Abstract][Full Text] [Related]
20. Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. Yu C; Choi K; Yin L; Grunlan JC ACS Nano; 2011 Oct; 5(10):7885-92. PubMed ID: 21899362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]