These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 28456251)

  • 1. High-precision control of static magnetic field magnitude, orientation, and gradient using optically pumped vapour cell magnetometry.
    Ingleby SJ; Griffin PF; Arnold AS; Chouliara M; Riis E
    Rev Sci Instrum; 2017 Apr; 88(4):043109. PubMed ID: 28456251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-shift suppression in a miniaturized Mx optically pumped Cs magnetometer array with enhanced resonance signal using off-resonant laser pumping.
    Scholtes T; Schultze V; IJsselsteijn R; Woetzel S; Meyer HG
    Opt Express; 2012 Dec; 20(28):29217-22. PubMed ID: 23388747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rubidium M
    Arnold D; Siegel S; Grisanti E; Wrachtrup J; Gerhardt I
    Rev Sci Instrum; 2017 Feb; 88(2):023103. PubMed ID: 28249519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-performance compact magnetic shield for optically pumped magnetometer-based magnetoencephalography.
    He K; Wan S; Sheng J; Liu D; Wang C; Li D; Qin L; Luo S; Qin J; Gao JH
    Rev Sci Instrum; 2019 Jun; 90(6):064102. PubMed ID: 31254989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of a weak static magnetic field on nitrogen-14 quadrupole resonance in the case of an axially symmetric electric field gradient tensor.
    Guendouz L; Aissani S; Marêché JF; Retournard A; Marande PL; Canet D
    Solid State Nucl Magn Reson; 2013; 55-56():84-90. PubMed ID: 24183810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compact, high-sensitivity atomic magnetometer utilizing the light-narrowing effect and in-phase excitation.
    Guo Y; Wan S; Sun X; Qin J
    Appl Opt; 2019 Feb; 58(4):734-738. PubMed ID: 30874114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Waveform reconstruction with a Cs based free-induction-decay magnetometer.
    Hunter D; Jiménez-Martínez R; Herbsommer J; Ramaswamy S; Li W; Riis E
    Opt Express; 2018 Nov; 26(23):30523-30531. PubMed ID: 30469950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical M(x) magnetometer.
    Schultze V; Ijsselsteijn R; Scholtes T; Woetzel S; Meyer HG
    Opt Express; 2012 Jun; 20(13):14201-12. PubMed ID: 22714483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive and stable vector magnetometer for operation in zero and finite fields.
    Bison G; Bondar V; Schmidt-Wellenburg P; Schnabel A; Voigt J
    Opt Express; 2018 Jun; 26(13):17350-17359. PubMed ID: 30119547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of the Nonlinear Zeeman Effect and Heading Error in Earth-Field-Range Alkali-Vapor Magnetometers.
    Bao G; Wickenbrock A; Rochester S; Zhang W; Budker D
    Phys Rev Lett; 2018 Jan; 120(3):033202. PubMed ID: 29400503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of the MLC on the MRI field distortion of a prototype MRI-linac.
    Kolling S; Oborn B; Keall P
    Med Phys; 2013 Dec; 40(12):121705. PubMed ID: 24320491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling optically pumped magnetometer interference in MEG as a spatially homogeneous magnetic field.
    Tierney TM; Alexander N; Mellor S; Holmes N; Seymour R; O'Neill GC; Maguire EA; Barnes GR
    Neuroimage; 2021 Dec; 244():118484. PubMed ID: 34418526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-sensitive Magnetic Microscopy with an Optically Pumped Magnetometer.
    Kim YJ; Savukov I
    Sci Rep; 2016 Apr; 6():24773. PubMed ID: 27103463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ triaxial magnetic field compensation for the spin-exchange-relaxation-free atomic magnetometer.
    Fang J; Qin J
    Rev Sci Instrum; 2012 Oct; 83(10):103104. PubMed ID: 23126748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-optical self-oscillating
    Wang H; Wu T; Wang H; Liu Y; Mao X; Peng X; Guo H
    Opt Express; 2020 May; 28(10):15081-15089. PubMed ID: 32403541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and validation of a large-format transition edge sensor array magnetic shielding system for space application.
    Bergen A; van Weers HJ; Bruineman C; Dhallé MM; Krooshoop HJ; Ter Brake HJ; Ravensberg K; Jackson BD; Wafelbakker CK
    Rev Sci Instrum; 2016 Oct; 87(10):105109. PubMed ID: 27802721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of magnetic field distortion on the accuracy of passive device localization frames in MR imaging.
    Cepek J; Chronik BA; Fenster A
    Med Phys; 2014 May; 41(5):052301. PubMed ID: 24784394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Performance of Laser-Pumped Cs-Magnetometers for the Planned UCN EDM Experiment at PSI.
    Groeger S; Bison G; Weis A
    J Res Natl Inst Stand Technol; 2005; 110(3):179-83. PubMed ID: 27308118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting rotating magnetic fields using optically pumped atomic magnetometers for measuring ultra-low-field magnetic resonance signals.
    Oida T; Ito Y; Kamada K; Kobayashi T
    J Magn Reson; 2012 Apr; 217():6-9. PubMed ID: 22417784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myotube orientation using strong static magnetic fields.
    Sakurai T; Hashimoto A; Kiyokawa T; Kikuchi K; Miyakoshi J
    Bioelectromagnetics; 2012 Jul; 33(5):421-7. PubMed ID: 22213103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.