These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 28456257)

  • 41. Effect of nanosecond laser pre-irradiation on the femtosecond laser-induced damage of Ta2O5/SiO2 high reflector.
    Chen S; Zhao Y; Li D; He H; Shao J
    Appl Opt; 2012 Apr; 51(10):1495-502. PubMed ID: 22505067
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 30 W-average-power femtosecond NIR laser operating in a flexible GHz-burst-regime.
    Bartulevicius T; Lipnickas M; Petrauskiene V; Madeikis K; Michailovas A
    Opt Express; 2022 Sep; 30(20):36849-36862. PubMed ID: 36258606
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Terawatt diode-pumped Yb:CaF2 laser.
    Siebold M; Hornung M; Boedefeld R; Podleska S; Klingebiel S; Wandt C; Krausz F; Karsch S; Uecker R; Jochmann A; Hein J; Kaluza MC
    Opt Lett; 2008 Dec; 33(23):2770-2. PubMed ID: 19037421
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Generation of tunable sub-45 femtosecond pulses by noncollinear four-wave mixing.
    Ghotbi M; Trabs P; Beutler M; Noack F
    Opt Lett; 2013 Feb; 38(4):486-8. PubMed ID: 23455111
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mid-IR femtosecond pulse generation on the microjoule level up to 5 μm at high repetition rates.
    Bradler M; Homann C; Riedle E
    Opt Lett; 2011 Nov; 36(21):4212-4. PubMed ID: 22048368
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hybrid CO
    Budden M; Gebert T; Cavalleri A
    Opt Express; 2021 Feb; 29(3):3575-3583. PubMed ID: 33770954
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Generation of two-color femtosecond pulses by self-synchronizing Ti:sapphire and Cr:forsterite lasers.
    Wei Z; Kobayashi Y; Zhang Z; Torizuka K
    Opt Lett; 2001 Nov; 26(22):1806-8. PubMed ID: 18059705
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Indirect high-bandwidth stabilization of carrier-envelope phase of a high-energy, low-repetition-rate laser.
    Fu Y; Takahashi EJ; Midorikawa K
    Opt Express; 2016 Jun; 24(12):13276-87. PubMed ID: 27410345
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient high repetition rate synchronous amplification of a passively mode-locked femtosecond dye laser.
    Sweetser J; Dunn TJ; Palese S; Walmsley IA; Radzewicz C; Miller RJ
    Appl Opt; 1993 Aug; 32(24):4471-9. PubMed ID: 20830105
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-power fifth-harmonic generation of femtosecond pulses in the vacuum ultraviolet using a Ti:sapphire laser.
    Tzankov P; Steinkellner O; Zheng J; Mero M; Freyer W; Husakou A; Babushkin I; Herrmann J; Noack F
    Opt Express; 2007 May; 15(10):6389-95. PubMed ID: 19546944
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Slow Ca(2+) wave stimulation using low repetition rate femtosecond pulsed irradiation.
    Iwanaga S; Smith NI; Fujita K; Kawata S
    Opt Express; 2006 Jan; 14(2):717-25. PubMed ID: 19503390
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultra-low timing jitter, Ti:Al2O3 synchronization for stimulated Raman scattering and pump-probe microscopy.
    Sherlock B; Saint-Jalm S; Malcolm GPA; Maker GT; Moger J
    J Biomed Opt; 2020 Jun; 25(6):1-7. PubMed ID: 32536041
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Amplification of 26-fs, 2-TW pulses near the gain-narrowing limit in Ti:sapphire.
    Zhou J; Huang CP; Murnane MM; Kapteyn HC
    Opt Lett; 1995 Jan; 20(1):64-6. PubMed ID: 19855798
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-energy, kHz, picosecond hybrid Yb-doped chirped-pulse amplifier.
    Chang CL; Krogen P; Hong KH; Zapata LE; Moses J; Calendron AL; Liang H; Lai CJ; Stein GJ; Keathley PD; Laurent G; Kärtner FX
    Opt Express; 2015 Apr; 23(8):10132-44. PubMed ID: 25969056
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS.
    Cikhardt J; Krása J; De Marco M; Pfeifer M; Velyhan A; Krouský E; Cikhardtová B; Klír D; Rezáč K; Ullschmied J; Skála J; Kubeš P; Kravárik J
    Rev Sci Instrum; 2014 Oct; 85(10):103507. PubMed ID: 25362393
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pump-seed synchronization for MHz repetition rate, high-power optical parametric chirped pulse amplification.
    Fattahi H; Teisset CY; Pronin O; Sugita A; Graf R; Pervak V; Gu X; Metzger T; Major Z; Krausz F; Apolonski A
    Opt Express; 2012 Apr; 20(9):9833-40. PubMed ID: 22535076
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Femtosecond Laser Eyewear Protection: Measurements and Precautions for Amplified High Power Applications.
    Riedel-Topper M; Wirick S; Hadler JA; Alberding BG; Stromberg CJ; Heilweil EJ
    J Laser Appl; 2018; 30():. PubMed ID: 30983843
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of broadband and ultrabroadband pulses at MHz and GHz pulse-repetition rates for nonlinear femtosecond-laser scanning microscopy.
    Studier H; Breunig HG; König K
    J Biophotonics; 2011 Jan; 4(1-2):84-91. PubMed ID: 20222101
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultraviolet ultrafast pump-probe laser based on a Ti:sapphire laser system.
    Rodriguez G; Roberts JP; Taylor AJ
    Opt Lett; 1994 Aug; 19(15):1146-8. PubMed ID: 19844558
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sub-20-fs, kilohertz-repetition-rate Ti:sapphire amplifier.
    Lenzner M; Spielmann C; Wintner E; Krausz F; Schmidt AJ
    Opt Lett; 1995 Jun; 20(12):1397-9. PubMed ID: 19862027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.