These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 28456522)

  • 1. How handedness influences perceptual and attentional processes during rapid serial visual presentation.
    Śmigasiewicz K; Liebrand M; Landmesser J; Verleger R
    Neuropsychologia; 2017 Jun; 100():155-163. PubMed ID: 28456522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leftward bias in orienting to and disengaging attention from salient task-irrelevant events in rapid serial visual presentation.
    Śmigasiewicz K; Westphal N; Verleger R
    Neuropsychologia; 2017 Jan; 94():96-105. PubMed ID: 27916671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms underlying the left visual-field advantage in the dual stream RSVP task: evidence from N2pc, P3, and distractor-evoked VEPs.
    Verleger R; Śmigasiewicz K; Möller F
    Psychophysiology; 2011 Aug; 48(8):1096-106. PubMed ID: 21265863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex hormones modulate neurophysiological correlates of visual temporal attention.
    Kranczioch C; Lindig A; Hausmann M
    Neuropsychologia; 2016 Oct; 91():86-98. PubMed ID: 27503768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bias for the left visual field in rapid serial visual presentation: effects of additional salient cues suggest a critical role of attention.
    Śmigasiewicz K; Asanowicz D; Westphal N; Verleger R
    J Cogn Neurosci; 2015 Feb; 27(2):266-79. PubMed ID: 25203275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rebalancing Spatial Attention: Endogenous Orienting May Partially Overcome the Left Visual Field Bias in Rapid Serial Visual Presentation.
    Śmigasiewicz K; Hasan GS; Verleger R
    J Cogn Neurosci; 2017 Jan; 29(1):1-13. PubMed ID: 27626225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A right hemisphere advantage at early cortical stages of processing alphanumeric stimuli. Evidence from electrophysiology.
    Asanowicz D; Verleger R; Kruse L; Beier K; Śmigasiewicz K
    Brain Cogn; 2017 Apr; 113():40-55. PubMed ID: 28113099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deployment and release of interhemispheric inhibition in dual-stream rapid serial visual presentation.
    Śmigasiewicz K; Weinrich J; Reinhardt B; Verleger R
    Biol Psychol; 2014 May; 99():47-59. PubMed ID: 24576590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The attentional blink freezes spatial attention allocation to targets, not distractors: evidence from human electrophysiology.
    Pomerleau VJ; Fortier-Gauthier U; Corriveau I; McDonald JJ; Dell'Acqua R; Jolicœur P
    Brain Res; 2014 Apr; 1559():33-45. PubMed ID: 24607298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateralization of spatial rather than temporal attention underlies the left hemifield advantage in rapid serial visual presentation.
    Asanowicz D; Kruse L; Śmigasiewicz K; Verleger R
    Brain Cogn; 2017 Nov; 118():54-62. PubMed ID: 28797898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding how visual attention locks on to a location: Toward a computational model of the N2pc component.
    Tan M; Wyble B
    Psychophysiology; 2015 Feb; 52(2):199-213. PubMed ID: 25252220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Affective Bias without Hemispheric Competition: Evidence for Independent Processing Resources in Each Cortical Hemisphere.
    Bekhtereva V; Craddock M; Müller MM
    J Cogn Neurosci; 2020 May; 32(5):963-976. PubMed ID: 31933436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable left-hemisphere language and orthographic lateralization reduces right-hemisphere face lateralization.
    Dundas EM; Plaut DC; Behrmann M
    J Cogn Neurosci; 2015 May; 27(5):913-25. PubMed ID: 25390197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How right is left? Handedness modulates neural responses during morphosyntactic processing.
    Grey S; Tanner D; van Hell JG
    Brain Res; 2017 Aug; 1669():27-43. PubMed ID: 28554807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological evidence of semantic interference in visual search.
    Telling AL; Kumar S; Meyer AS; Humphreys GW
    J Cogn Neurosci; 2010 Oct; 22(10):2212-25. PubMed ID: 19803680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of top-down spatial attention in contingent attentional capture.
    Huang W; Su Y; Zhen Y; Qu Z
    Psychophysiology; 2016 May; 53(5):650-62. PubMed ID: 26879628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological indices of target and distractor processing in visual search.
    Hickey C; Di Lollo V; McDonald JJ
    J Cogn Neurosci; 2009 Apr; 21(4):760-75. PubMed ID: 18564048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parsing attentional processes involved in the elicitation of the N2pc component.
    Drew AP; Karst AT
    Neuroreport; 2019 Feb; 30(3):157-161. PubMed ID: 30489426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orienting and maintenance of spatial attention in audition and vision: an event-related brain potential study.
    Salmi J; Rinne T; Degerman A; Alho K
    Eur J Neurosci; 2007 Jun; 25(12):3725-33. PubMed ID: 17610592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient Distraction and Attentional Control during a Sustained Selective Attention Task.
    Demeter E; Woldorff MG
    J Cogn Neurosci; 2016 Jul; 28(7):935-47. PubMed ID: 26967946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.