These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28456689)

  • 1. A novel method for quantitative measurements of gene expression in single living cells.
    Mandic A; Strebinger D; Regali C; Phillips NE; Suter DM
    Methods; 2017 May; 120():65-75. PubMed ID: 28456689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring transcription dynamics in living cells using a photobleaching approach.
    Hochberg H; Brody Y; Shav-Tal Y
    Methods; 2017 May; 120():58-64. PubMed ID: 28434903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Image Analysis of Single-Molecule mRNA Dynamics in Living Cells.
    Rino J; de Jesus AC; Carmo-Fonseca M
    Methods Mol Biol; 2017; 1563():229-242. PubMed ID: 28324612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring ERK Activity Dynamics in Single Living Cells Using FRET Biosensors.
    Blum Y; Fritz RD; Ryu H; Pertz O
    Methods Mol Biol; 2017; 1487():203-221. PubMed ID: 27924569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CAST: An automated segmentation and tracking tool for the analysis of transcriptional kinetics from single-cell time-lapse recordings.
    Blanchoud S; Nicolas D; Zoller B; Tidin O; Naef F
    Methods; 2015 Sep; 85():3-11. PubMed ID: 25934263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal visualization of DNA replication dynamics.
    Reinhart M; Casas-Delucchi CS; Cardoso MC
    Methods Mol Biol; 2013; 1042():213-25. PubMed ID: 23980010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using bleach-chase to measure protein half-lives in living cells.
    Geva-Zatorsky N; Issaeva I; Mayo A; Cohen A; Dekel E; Danon T; Cohen L; Liron Y; Alon U; Eden E
    Nat Protoc; 2012 Mar; 7(4):801-11. PubMed ID: 22461069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic labeling and recovery of nascent RNA to accurately quantify mRNA stability.
    Russo J; Heck AM; Wilusz J; Wilusz CJ
    Methods; 2017 May; 120():39-48. PubMed ID: 28219744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eyes on Translation.
    Chekulaeva M; Landthaler M
    Mol Cell; 2016 Sep; 63(6):918-25. PubMed ID: 27635758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of induced RNA in single bacterial cells.
    Borogovac A; Broude NE
    Methods Mol Biol; 2011; 714():189-99. PubMed ID: 21431742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein and RNA quantification of multiple genes in single cells.
    Kays I; Chen BE
    Biotechniques; 2019 Jan; 66(1):15-21. PubMed ID: 30334472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-sensitive digital quantification of proteins and mRNA in single cells.
    Lin J; Jordi C; Son M; Van Phan H; Drayman N; Abasiyanik MF; Vistain L; Tu HL; Tay S
    Nat Commun; 2019 Aug; 10(1):3544. PubMed ID: 31391463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of mutant TKGFP for real-time imaging of temporal dynamics of HIF-1 signal transduction activity mediated by hypoxia and reoxygenation in tumors in living mice.
    Hsieh CH; Kuo JW; Lee YJ; Chang CW; Gelovani JG; Liu RS
    J Nucl Med; 2009 Dec; 50(12):2049-57. PubMed ID: 19910419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Cell Quantification of Protein Degradation Rates by Time-Lapse Fluorescence Microscopy in Adherent Cell Culture.
    Alber AB; Suter DM
    J Vis Exp; 2018 Feb; (132):. PubMed ID: 29443092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging Single mRNA Dynamics in Live Neurons and Brains.
    Moon HC; Park HY
    Methods Enzymol; 2016; 572():51-64. PubMed ID: 27241749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mTRIP: an imaging tool to investigate mitochondrial DNA dynamics in physiology and disease at the single-cell resolution.
    Chatre L; Ricchetti M
    Methods Mol Biol; 2015; 1264():133-47. PubMed ID: 25631010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput cell-cycle imaging opens new doors for discovery.
    Kuwada NJ; Traxler B; Wiggins PA
    Curr Genet; 2015 Nov; 61(4):513-6. PubMed ID: 25980547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging single mRNAs to study dynamics of mRNA export in the yeast Saccharomyces cerevisiae.
    Bensidoun P; Raymond P; Oeffinger M; Zenklusen D
    Methods; 2016 Apr; 98():104-114. PubMed ID: 26784711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing endogenous mRNAs in living yeast using m-TAG, a PCR-based RNA aptamer integration method, and fluorescence microscopy.
    Haim-Vilmovsky L; Gerst JE
    Methods Mol Biol; 2011; 714():237-47. PubMed ID: 21431745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using time-lapse fluorescence microscopy to study gene regulation.
    Zou F; Bai L
    Methods; 2019 Apr; 159-160():138-145. PubMed ID: 30599195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.