These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

520 related articles for article (PubMed ID: 28456824)

  • 21. Assessing the potential for cadmium phytoremediation with Calamagrostis epigejos: a pot experiment.
    Lehmann C; Rebele F
    Int J Phytoremediation; 2004; 6(2):169-83. PubMed ID: 15328982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants.
    Sinha S; Gupta AK
    Chemosphere; 2005 Dec; 61(8):1204-14. PubMed ID: 16226293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cadmium accumulation and tolerance of Macleaya cordata: a newly potential plant for sustainable phytoremediation in Cd-contaminated soil.
    Nie J; Liu Y; Zeng G; Zheng B; Tan X; Liu H; Xie J; Gan C; Liu W
    Environ Sci Pollut Res Int; 2016 May; 23(10):10189-99. PubMed ID: 26875820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ricinus communis L. A Value Added Crop for Remediation of Cadmium Contaminated Soil.
    Bauddh K; Singh K; Singh RP
    Bull Environ Contam Toxicol; 2016 Feb; 96(2):265-9. PubMed ID: 26464392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Citric acid assisted phytoremediation of cadmium by Brassica napus L.
    Ehsan S; Ali S; Noureen S; Mahmood K; Farid M; Ishaque W; Shakoor MB; Rizwan M
    Ecotoxicol Environ Saf; 2014 Aug; 106():164-72. PubMed ID: 24840879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hyperaccumulator straw improves the cadmium phytoextraction efficiency of emergent plant Nasturtium officinale.
    Li K; Lin L; Wang J; Xia H; Liang D; Wang X; Liao M; Wang L; Liu L; Chen C; Tang Y
    Environ Monit Assess; 2017 Aug; 189(8):374. PubMed ID: 28681323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal phytoremediation by the halophyte Limoniastrum monopetalum (L.) Boiss: two contrasting ecotypes.
    Manousaki E; Galanaki K; Papadimitriou L; Kalogerakis N
    Int J Phytoremediation; 2014; 16(7-12):755-69. PubMed ID: 24933883
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil.
    Singh J; Lee BK
    J Environ Manage; 2016 Apr; 170():88-96. PubMed ID: 26803259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Youngia erythrocarpa, a newly discovered cadmium hyperaccumulator plant.
    Lin L; Ning B; Liao M; Ren Y; Wang Z; Liu Y; Cheng J; Luo L
    Environ Monit Assess; 2015 Jan; 187(1):4205. PubMed ID: 25504193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Study on Cadmium Phytoremediation Potential of Indian Mustard, Brassica juncea.
    Goswami S; Das S
    Int J Phytoremediation; 2015; 17(1-6):583-8. PubMed ID: 25747246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Can liming change root anatomy, biomass allocation and trace element distribution among plant parts of Salix × smithiana in trace element-polluted soils?
    Vondráčková S; Tlustoš P; Száková J
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):19201-19210. PubMed ID: 28664494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phytoextraction potential of poplar (Populus alba L. var. pyramidalis Bunge) from calcareous agricultural soils contaminated by cadmium.
    Hu Y; Nan Z; Jin C; Wang N; Luo H
    Int J Phytoremediation; 2014; 16(5):482-95. PubMed ID: 24912230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phytoremediation of cadmium contaminated soils by Amaranthus Hypochondriacus L.: The effects of soil properties highlighting cation exchange capacity.
    Cui X; Mao P; Sun S; Huang R; Fan Y; Li Y; Li Y; Zhuang P; Li Z
    Chemosphere; 2021 Nov; 283():131067. PubMed ID: 34144285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physiological response of Conyza Canadensis to cadmium stress monitored by Fourier transform infrared spectroscopy and cadmium accumulation.
    Yu S; Sheng L; Mao H; Huang X; Luo L; Li Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():118007. PubMed ID: 31923788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium.
    Hechmi N; Ben Aissa N; Abdennaceur H; Jedidi N
    Int J Phytoremediation; 2013; 15(7):703-13. PubMed ID: 23819269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cadmium accumulation and tolerance of Lagerstroemia indica and Lagerstroemia fauriei (Lythraceae) seedlings for phytoremediation applications.
    Wang Y; Gu C; Bai S; Sun Z; Zhu T; Zhu X; Grit DH; Tembrock LR
    Int J Phytoremediation; 2016 Nov; 18(11):1104-12. PubMed ID: 27196684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reducing the bioavailability of cadmium in contaminated soil by dithiocarbamate chitosan as a new remediation.
    Yin Z; Cao J; Li Z; Qiu D
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):9668-75. PubMed ID: 25628112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of the phytoextraction potential of high biomass crop plants.
    Hernández-Allica J; Becerril JM; Garbisu C
    Environ Pollut; 2008 Mar; 152(1):32-40. PubMed ID: 17644228
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrated micro-biochemical approach for phytoremediation of cadmium and lead contaminated soils using Gladiolus grandiflorus L cut flower.
    Mani D; Kumar C; Patel NK
    Ecotoxicol Environ Saf; 2016 Feb; 124():435-446. PubMed ID: 26615479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phytoextraction of cadmium by four Mediterranean shrub species.
    Tapia Y; Cala V; Eymar E; Frutos I; Gárate A; Masaguer A
    Int J Phytoremediation; 2011 Jul; 13(6):567-79. PubMed ID: 21972503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.