BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 28456867)

  • 1. The Temporal Dynamics of Response Inhibition and their Modulation by Cognitive Control.
    Raud L; Huster RJ
    Brain Topogr; 2017 Jul; 30(4):486-501. PubMed ID: 28456867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection?
    Dimoska A; Johnstone SJ; Barry RJ
    Brain Cogn; 2006 Nov; 62(2):98-112. PubMed ID: 16814442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task.
    Schevernels H; Bombeke K; Van der Borght L; Hopf JM; Krebs RM; Boehler CN
    Neuroimage; 2015 Nov; 121():115-25. PubMed ID: 26188262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential modulation of the N2 and P3 event-related potentials by response conflict and inhibition.
    Groom MJ; Cragg L
    Brain Cogn; 2015 Jul; 97():1-9. PubMed ID: 25955278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Single Mechanism for Global and Selective Response Inhibition under the Influence of Motor Preparation.
    Raud L; Huster RJ; Ivry RB; Labruna L; Messel MS; Greenhouse I
    J Neurosci; 2020 Oct; 40(41):7921-7935. PubMed ID: 32928884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stopping ability in younger and older adults: Behavioral and event-related potential.
    Hsieh S; Lin YC
    Cogn Affect Behav Neurosci; 2017 Apr; 17(2):348-363. PubMed ID: 27896714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the stop-signal modality on brain electrical activity associated with suppression of ongoing actions.
    Carrillo-de-la-Peña MT; Bonilla FM; González-Villar AJ
    Biol Psychol; 2019 Apr; 143():85-92. PubMed ID: 30807785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of fetal alcohol syndrome on response execution and inhibition: an event-related potential study.
    Burden MJ; Andrew C; Saint-Amour D; Meintjes EM; Molteno CD; Hoyme HE; Robinson LK; Khaole N; Nelson CA; Jacobson JL; Jacobson SW
    Alcohol Clin Exp Res; 2009 Nov; 33(11):1994-2004. PubMed ID: 19719791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Movement-related potentials in the Go/NoGo task: the P3 reflects both cognitive and motor inhibition.
    Smith JL; Johnstone SJ; Barry RJ
    Clin Neurophysiol; 2008 Mar; 119(3):704-714. PubMed ID: 18164657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A failure to stop and attention fluctuations: an evoked oscillations study of the stop-signal paradigm.
    Knyazev GG; Levin EA; Savostyanov AN
    Clin Neurophysiol; 2008 Mar; 119(3):556-567. PubMed ID: 18164656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early attentional processes distinguish selective from global motor inhibitory control: an electrical neuroimaging study.
    Sallard E; Barral J; Chavan CF; Spierer L
    Neuroimage; 2014 Feb; 87():183-9. PubMed ID: 24220039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioural and ERP indices of response inhibition during a Stop-signal task in children with two subtypes of Attention-Deficit Hyperactivity Disorder.
    Johnstone SJ; Barry RJ; Clarke AR
    Int J Psychophysiol; 2007 Oct; 66(1):37-47. PubMed ID: 17604142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response inhibition of children with ADHD in the stop-signal task: an event-related potential study.
    Senderecka M; Grabowska A; Szewczyk J; Gerc K; Chmylak R
    Int J Psychophysiol; 2012 Jul; 85(1):93-105. PubMed ID: 21641941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. It's not too late: the onset of the frontocentral P3 indexes successful response inhibition in the stop-signal paradigm.
    Wessel JR; Aron AR
    Psychophysiology; 2015 Apr; 52(4):472-80. PubMed ID: 25348645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of stop-signal probability in the stop-signal paradigm: the N2/P3 complex further validated.
    Ramautar JR; Kok A; Ridderinkhof KR
    Brain Cogn; 2004 Nov; 56(2):234-52. PubMed ID: 15518938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weak proactive cognitive/motor brain control accounts for poor children's behavioral performance in speeded discrimination tasks.
    Quinzi F; Perri RL; Berchicci M; Bianco V; Pitzalis S; Zeri F; Di Russo F
    Biol Psychol; 2018 Oct; 138():211-222. PubMed ID: 30130614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in unity: The go/no-go and stop signal tasks rely on different mechanisms.
    Raud L; Westerhausen R; Dooley N; Huster RJ
    Neuroimage; 2020 Apr; 210():116582. PubMed ID: 31987997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response competition and response inhibition during different choice-discrimination tasks: evidence from ERP measured inside MRI scanner.
    Gonzalez-Rosa JJ; Inuggi A; Blasi V; Cursi M; Annovazzi P; Comi G; Falini A; Leocani L
    Int J Psychophysiol; 2013 Jul; 89(1):37-47. PubMed ID: 23664841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ERP components associated with successful and unsuccessful stopping in a stop-signal task.
    Kok A; Ramautar JR; De Ruiter MB; Band GP; Ridderinkhof KR
    Psychophysiology; 2004 Jan; 41(1):9-20. PubMed ID: 14692996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition from reactive control to proactive control across conflict adaptation: An sLORETA study.
    Suzuki K; Shinoda H
    Brain Cogn; 2015 Nov; 100():7-14. PubMed ID: 26432378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.