BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28457551)

  • 1. Short communication: Comparative proteomic analysis of the lactating and nonlactating bovine mammary gland.
    Dai WT; Wang QJ; Zou YX; White RR; Liu JX; Liu HY
    J Dairy Sci; 2017 Jul; 100(7):5928-5935. PubMed ID: 28457551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactation-related metabolic mechanism investigated based on mammary gland metabolomics and 4 biofluids' metabolomics relationships in dairy cows.
    Sun HZ; Shi K; Wu XH; Xue MY; Wei ZH; Liu JX; Liu HY
    BMC Genomics; 2017 Dec; 18(1):936. PubMed ID: 29197344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic profiles of the bovine mammary gland during lactation and the dry period.
    Dai WT; Zou YX; White RR; Liu JX; Liu HY
    Funct Integr Genomics; 2018 Mar; 18(2):125-140. PubMed ID: 29275436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DIGE based proteome analysis of mammary gland tissue in water buffalo (Bubalus bubalis): lactating vis-a-vis heifer.
    Jena MK; Janjanam J; Naru J; Kumar S; Kumar S; Singh S; Mohapatra SK; Kola S; Anand V; Jaswal S; Verma AK; Malakar D; Dang AK; Kaushik JK; Reddy VS; Mohanty AK
    J Proteomics; 2015 Apr; 119():100-11. PubMed ID: 25661041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of the effects of lutein on mammary gland metabolism in dairy cows.
    Wang C; Wang C; Liu J; Liu H
    J Dairy Res; 2018 May; 85(2):152-156. PubMed ID: 29785918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in gene expression of glucose transporters in lactating and nonlactating cows.
    Komatsu T; Itoh F; Kushibiki S; Hodate K
    J Anim Sci; 2005 Mar; 83(3):557-64. PubMed ID: 15705752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in the abundance of nuclear proteins in the bovine mammary gland throughout the lactation and gestation cycles.
    Wheeler TT; Broadhurst MK; Rajan GH; Wilkins RJ
    J Dairy Sci; 1997 Sep; 80(9):2011-9. PubMed ID: 9313142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous lactation in dairy cows: effect on milk production and mammary nutrient supply and extraction.
    Madsen TG; Nielsen MO; Andersen JB; Ingvartsen KL
    J Dairy Sci; 2008 May; 91(5):1791-801. PubMed ID: 18420610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of secretion removal on bovine mammary gland function following an extended milk stasis.
    Noble MS; Hurley WL
    J Dairy Sci; 1999 Aug; 82(8):1723-30. PubMed ID: 10480098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxylipid profiles of dairy cattle vary throughout the transition into early mammary gland involution.
    Putman AK; Brown JL; Gandy JC; Abuelo A; Sordillo LM
    J Dairy Sci; 2019 Mar; 102(3):2481-2491. PubMed ID: 30692004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC) on milk lipid synthesis in mammary glands of dairy cows.
    Yang Y; Lin Y; Duan X; Lv H; Xing W; Li Q; Gao X; Hou X
    J Dairy Sci; 2017 May; 100(5):4014-4024. PubMed ID: 28284693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mammary transcriptome analysis of lactating dairy cows following administration of bovine growth hormone.
    McCoard SA; Hayashi AA; Sciascia Q; Rounce J; Sinclair B; McNabb WC; Roy NC
    Animal; 2016 Dec; 10(12):2008-2017. PubMed ID: 27222096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mammary gland function during involution.
    Hurley WL
    J Dairy Sci; 1989 Jun; 72(6):1637-46. PubMed ID: 2668360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of dry period management on mammary gland function and its endocrine regulation in dairy cows.
    Bernier-Dodier P; Girard CL; Talbot BG; Lacasse P
    J Dairy Sci; 2011 Oct; 94(10):4922-36. PubMed ID: 21943744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of the dairy cow mammary transcriptome between early lactation and mid-dry period.
    Lin Y; Lv H; Jiang M; Zhou J; Song S; Hou X
    J Dairy Res; 2019 Feb; 86(1):63-67. PubMed ID: 30729898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supplements of vitamins B9 and B12 affect hepatic and mammary gland gene expression profiles in lactating dairy cows.
    Ouattara B; Bissonnette N; Duplessis M; Girard CL
    BMC Genomics; 2016 Aug; 17(1):640. PubMed ID: 27526683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal and spatial heterogeneity in milk and immune-related gene expression during mammary gland involution in dairy cows.
    Singh K; Phyn CVC; Reinsch M; Dobson JM; Oden K; Davis SR; Stelwagen K; Henderson HV; Molenaar AJ
    J Dairy Sci; 2017 Sep; 100(9):7669-7685. PubMed ID: 28711246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of continuous lactation and short dry periods on mammary function and animal health.
    Collier RJ; Annen-Dawson EL; Pezeshki A
    Animal; 2012 Mar; 6(3):403-14. PubMed ID: 22436219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of L-type amino acid transporter 1 on milk protein synthesis in mammary glands of dairy cows.
    Lin Y; Duan X; Lv H; Yang Y; Liu Y; Gao X; Hou X
    J Dairy Sci; 2018 Feb; 101(2):1687-1696. PubMed ID: 29224866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abundance and phosphorylation state of translation initiation factors in mammary glands of lactating and nonlactating dairy cows.
    Toerien CA; Cant JP
    J Dairy Sci; 2007 Jun; 90(6):2726-34. PubMed ID: 17517712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.