BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 28457705)

  • 21. Agelastatin E, agelastatin F, and benzosceptrin C from the marine sponge Agelas dendromorpha.
    Tilvi S; Moriou C; Martin MT; Gallard JF; Sorres J; Patel K; Petek S; Debitus C; Ermolenko L; Al-Mourabit A
    J Nat Prod; 2010 Apr; 73(4):720-3. PubMed ID: 20166736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tetracyclines Modify Translation by Targeting Key Human rRNA Substructures.
    Mortison JD; Schenone M; Myers JA; Zhang Z; Chen L; Ciarlo C; Comer E; Natchiar SK; Carr SA; Klaholz BP; Myers AG
    Cell Chem Biol; 2018 Dec; 25(12):1506-1518.e13. PubMed ID: 30318461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ribosomal RNA is the target for oxazolidinones, a novel class of translational inhibitors.
    Matassova NB; Rodnina MV; Endermann R; Kroll HP; Pleiss U; Wild H; Wintermeyer W
    RNA; 1999 Jul; 5(7):939-46. PubMed ID: 10411137
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Narciclasine: an antitumour alkaloid which blocks peptide bond formation by eukaryotic ribosomes.
    Carrasco L; Fresno M; Vazquez D
    FEBS Lett; 1975 Apr; 52(2):236-9. PubMed ID: 1093871
    [No Abstract]   [Full Text] [Related]  

  • 25. [Ribosomal antibiotics].
    Man'kin AS
    Mol Biol (Mosk); 2001; 35(4):597-609. PubMed ID: 11524946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxazolidinones mechanism of action: inhibition of the first peptide bond formation.
    Patel U; Yan YP; Hobbs FW; Kaczmarczyk J; Slee AM; Pompliano DL; Kurilla MG; Bobkova EV
    J Biol Chem; 2001 Oct; 276(40):37199-205. PubMed ID: 11483595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual effect of chloramphenicol peptides on ribosome inhibition.
    Bougas A; Vlachogiannis IA; Gatos D; Arenz S; Dinos GP
    Amino Acids; 2017 May; 49(5):995-1004. PubMed ID: 28283906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis for selective stalling of human ribosome nascent chain complexes by a drug-like molecule.
    Li W; Ward FR; McClure KF; Chang ST; Montabana E; Liras S; Dullea RG; Cate JHD
    Nat Struct Mol Biol; 2019 Jun; 26(6):501-509. PubMed ID: 31160784
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of translation in eukaryotic systems by harringtonine.
    Fresno M; Jiménez A; Vázquez D
    Eur J Biochem; 1977 Jan; 72(2):323-30. PubMed ID: 319998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. trans-Translation inhibitors bind to a novel site on the ribosome and clear Neisseria gonorrhoeae in vivo.
    Aron ZD; Mehrani A; Hoffer ED; Connolly KL; Srinivas P; Torhan MC; Alumasa JN; Cabrera M; Hosangadi D; Barbor JS; Cardinale SC; Kwasny SM; Morin LR; Butler MM; Opperman TJ; Bowlin TL; Jerse A; Stagg SM; Dunham CM; Keiler KC
    Nat Commun; 2021 Mar; 12(1):1799. PubMed ID: 33741965
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visualization of chemical modifications in the human 80S ribosome structure.
    Natchiar SK; Myasnikov AG; Kratzat H; Hazemann I; Klaholz BP
    Nature; 2017 Nov; 551(7681):472-477. PubMed ID: 29143818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of translation in bacterial and eukaryotic systems by the antibiotic anthelmycin (hikizimycin).
    González A; Vázquez D; Jiménez A
    Biochim Biophys Acta; 1979 Feb; 561(2):403-9. PubMed ID: 371683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural basis of translation inhibition by cadazolid, a novel quinoxolidinone antibiotic.
    Scaiola A; Leibundgut M; Boehringer D; Caspers P; Bur D; Locher HH; Rueedi G; Ritz D
    Sci Rep; 2019 Apr; 9(1):5634. PubMed ID: 30948752
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potent fluorinated agelastatin analogues for chronic lymphocytic leukemia: design, synthesis, and pharmacokinetic studies.
    Stout EP; Choi MY; Castro JE; Molinski TF
    J Med Chem; 2014 Jun; 57(12):5085-93. PubMed ID: 24673739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis facilitates an understanding of the structural basis for translation inhibition by the lissoclimides.
    Könst ZA; Szklarski AR; Pellegrino S; Michalak SE; Meyer M; Zanette C; Cencic R; Nam S; Voora VK; Horne DA; Pelletier J; Mobley DL; Yusupova G; Yusupov M; Vanderwal CD
    Nat Chem; 2017 Nov; 9(11):1140-1149. PubMed ID: 29064494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissecting the Nucleoside Antibiotics as Universal Translation Inhibitors.
    Nelli MR; Heitmeier KN; Looper RE
    Acc Chem Res; 2021 Jul; 54(13):2798-2811. PubMed ID: 34152729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antineoplastic agents 470. Absolute configuration of the marine sponge bromopyrrole agelastatin A.
    Pettit GR; Ducki S; Herald DL; Doubek DL; Schmidt JM; Chapuis JC
    Oncol Res; 2005; 15(1):11-20. PubMed ID: 15839302
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enantiospecific formal total synthesis of the tumor and GSK-3 beta inhibiting alkaloid, (-)-agelastatin A.
    Hale KJ; Domostoj MM; Tocher DA; Irving E; Scheinmann F
    Org Lett; 2003 Aug; 5(16):2927-30. PubMed ID: 12889910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxazolidinone resistance mutations in 23S rRNA of Escherichia coli reveal the central region of domain V as the primary site of drug action.
    Xiong L; Kloss P; Douthwaite S; Andersen NM; Swaney S; Shinabarger DL; Mankin AS
    J Bacteriol; 2000 Oct; 182(19):5325-31. PubMed ID: 10986233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin.
    Poulsen SM; Kofoed C; Vester B
    J Mol Biol; 2000 Dec; 304(3):471-81. PubMed ID: 11090288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.