These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 28457836)
1. Imaging of current flow in the human head during transcranial electrical therapy. Kasinadhuni AK; Indahlastari A; Chauhan M; Schär M; Mareci TH; Sadleir RJ Brain Stimul; 2017; 10(4):764-772. PubMed ID: 28457836 [TBL] [Abstract][Full Text] [Related]
2. Current Density Imaging During Transcranial Direct Current Stimulation Using DT-MRI and MREIT: Algorithm Development and Numerical Simulations. Kwon OI; Sajib SZ; Sersa I; Oh TI; Jeong WC; Kim HJ; Woo EJ IEEE Trans Biomed Eng; 2016 Jan; 63(1):168-75. PubMed ID: 26111387 [TBL] [Abstract][Full Text] [Related]
3. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI. Sajib SZK; Katoch N; Kim HJ; Kwon OI; Woo EJ IEEE Trans Biomed Eng; 2017 Nov; 64(11):2505-2514. PubMed ID: 28767360 [TBL] [Abstract][Full Text] [Related]
4. Effects of Electrode Drift in Transcranial Direct Current Stimulation. Woods AJ; Bryant V; Sacchetti D; Gervits F; Hamilton R Brain Stimul; 2015; 8(3):515-9. PubMed ID: 25583653 [TBL] [Abstract][Full Text] [Related]
5. Benchmarking transcranial electrical stimulation finite element models: a comparison study. Indahlastari A; Chauhan M; Sadleir RJ J Neural Eng; 2019 Apr; 16(2):026019. PubMed ID: 30605892 [TBL] [Abstract][Full Text] [Related]
6. Effect of electrode-electrolyte spatial mismatch on transcranial direct current stimulation: a finite element modeling study. Chen L; Zou X; Tang R; Ke A; He J J Neural Eng; 2019 Aug; 16(5):056012. PubMed ID: 31195379 [TBL] [Abstract][Full Text] [Related]
7. Methods to Compare Predicted and Observed Phosphene Experience in tACS Subjects. Indahlastari A; Kasinadhuni AK; Saar C; Castellano K; Mousa B; Chauhan M; Mareci TH; Sadleir RJ Neural Plast; 2018; 2018():8525706. PubMed ID: 30627150 [TBL] [Abstract][Full Text] [Related]
8. Changing head model extent affects finite element predictions of transcranial direct current stimulation distributions. Indahlastari A; Chauhan M; Schwartz B; Sadleir RJ J Neural Eng; 2016 Dec; 13(6):066006. PubMed ID: 27705955 [TBL] [Abstract][Full Text] [Related]
9. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS). Alam M; Truong DQ; Khadka N; Bikson M Phys Med Biol; 2016 Jun; 61(12):4506-21. PubMed ID: 27223853 [TBL] [Abstract][Full Text] [Related]
10. Cortical Excitability through Anodal Transcranial Direct Current Stimulation: a Computational Approach. Arora Y; Chowdhury SR J Med Syst; 2020 Jan; 44(2):48. PubMed ID: 31900599 [TBL] [Abstract][Full Text] [Related]
11. Multiscale coupling of transcranial direct current stimulation to neuron electrodynamics: modeling the influence of the transcranial electric field on neuronal depolarization. Dougherty ET; Turner JC; Vogel F Comput Math Methods Med; 2014; 2014():360179. PubMed ID: 25404950 [TBL] [Abstract][Full Text] [Related]
12. Transcranial electrical stimulation motor threshold can estimate individualized tDCS dosage from reverse-calculation electric-field modeling. Caulfield KA; Badran BW; DeVries WH; Summers PM; Kofmehl E; Li X; Borckardt JJ; Bikson M; George MS Brain Stimul; 2020; 13(4):961-969. PubMed ID: 32330607 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes. Lee BI; Oh SH; Woo EJ; Lee SY; Cho MH; Kwon O; Seo JK; Lee JY; Baek WS Phys Med Biol; 2003 Jul; 48(13):1971-86. PubMed ID: 12884929 [TBL] [Abstract][Full Text] [Related]
14. Electric field envelope focality in superficial brain areas with linear alignment montage in temporal interference stimulation. Hirata A; Akazawa Y; Kodera S; Otsuru N; Laakso I Comput Biol Med; 2024 Aug; 178():108697. PubMed ID: 38850958 [TBL] [Abstract][Full Text] [Related]
15. Focused current density imaging using internal electrode in magnetic resonance electrical impedance tomography (MREIT). Jeong WC; Sajib S; Kim HJ; Kwon OI IEEE Trans Biomed Eng; 2014 Jul; 61(7):1938-46. PubMed ID: 24956612 [TBL] [Abstract][Full Text] [Related]
16. A simple method for EEG guided transcranial electrical stimulation without models. Cancelli A; Cottone C; Tecchio F; Truong DQ; Dmochowski J; Bikson M J Neural Eng; 2016 Jun; 13(3):036022. PubMed ID: 27172063 [TBL] [Abstract][Full Text] [Related]
17. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation. Minjoli S; Saturnino GB; Blicher JU; Stagg CJ; Siebner HR; Antunes A; Thielscher A Neuroimage Clin; 2017; 15():106-117. PubMed ID: 28516033 [TBL] [Abstract][Full Text] [Related]
18. Towards precise brain stimulation: Is electric field simulation related to neuromodulation? Antonenko D; Thielscher A; Saturnino GB; Aydin S; Ittermann B; Grittner U; Flöel A Brain Stimul; 2019; 12(5):1159-1168. PubMed ID: 30930209 [TBL] [Abstract][Full Text] [Related]
19. Transcranial direct current stimulation in patients after decompressive craniectomy: a finite element model to investigate factors affecting the cortical electric field. Sun W; Dong X; Yu G; Shuai L; Yuan Y; Ma C J Int Med Res; 2021 Feb; 49(2):300060520942112. PubMed ID: 33788619 [TBL] [Abstract][Full Text] [Related]
20. Cost of focality in TDCS: Interindividual variability in electric fields. Mikkonen M; Laakso I; Tanaka S; Hirata A Brain Stimul; 2020; 13(1):117-124. PubMed ID: 31606449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]