These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
594 related articles for article (PubMed ID: 28457960)
1. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration. Nommeots-Nomm A; Labbaf S; Devlin A; Todd N; Geng H; Solanki AK; Tang HM; Perdika P; Pinna A; Ejeian F; Tsigkou O; Lee PD; Esfahani MHN; Mitchell CA; Jones JR Acta Biomater; 2017 Jul; 57():449-461. PubMed ID: 28457960 [TBL] [Abstract][Full Text] [Related]
2. Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds. Thavornyutikarn B; Tesavibul P; Sitthiseripratip K; Chatarapanich N; Feltis B; Wright PFA; Turney TW Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1281-1288. PubMed ID: 28415417 [TBL] [Abstract][Full Text] [Related]
3. Surface nitridation improves bone cell response to melt-derived bioactive silicate/borosilicate glass composite scaffolds. Orgaz F; Dzika A; Szycht O; Amat D; Barba F; Becerra J; Santos-Ruiz L Acta Biomater; 2016 Jan; 29():424-434. PubMed ID: 26441124 [TBL] [Abstract][Full Text] [Related]
4. Systematic evaluation of the osteogenic capacity of low-melting bioactive glass-reinforced 45S5 Bioglass porous scaffolds in rabbit femoral defects. Zhang L; Ke X; Lin L; Xiao J; Yang X; Wang J; Yang G; Xu S; Gou Z; Shi Z Biomed Mater; 2017 Jun; 12(3):035010. PubMed ID: 28589920 [TBL] [Abstract][Full Text] [Related]
5. [Application of mechanically reinforced 45S5 Bioglass Chen L; Yang X; Ma R; Zhu L Zhejiang Da Xue Xue Bao Yi Xue Ban; 2017 May; 46(6):600-608. PubMed ID: 29658662 [TBL] [Abstract][Full Text] [Related]
6. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds. Chen QZ; Thouas GA Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791 [TBL] [Abstract][Full Text] [Related]
7. Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation. Jones JR; Lin S; Yue S; Lee PD; Hanna JV; Smith ME; Newport RJ Proc Inst Mech Eng H; 2010 Dec; 224(12):1373-87. PubMed ID: 21287826 [TBL] [Abstract][Full Text] [Related]
8. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution. Baino F; Ferraris M; Bretcanu O; Verné E; Vitale-Brovarone C J Biomater Appl; 2013 Mar; 27(7):872-90. PubMed ID: 22207602 [TBL] [Abstract][Full Text] [Related]
9. Review of bioactive glass: from Hench to hybrids. Jones JR Acta Biomater; 2013 Jan; 9(1):4457-86. PubMed ID: 22922331 [TBL] [Abstract][Full Text] [Related]
10. Reprint of: Review of bioactive glass: From Hench to hybrids. Jones JR Acta Biomater; 2015 Sep; 23 Suppl():S53-82. PubMed ID: 26235346 [TBL] [Abstract][Full Text] [Related]
11. Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique. Wu ZY; Hill RG; Yue S; Nightingale D; Lee PD; Jones JR Acta Biomater; 2011 Apr; 7(4):1807-16. PubMed ID: 21130188 [TBL] [Abstract][Full Text] [Related]
12. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Dasgupta S; Maji K; Nandi SK Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration. Poh PS; Hutmacher DW; Stevens MM; Woodruff MA Biofabrication; 2013 Dec; 5(4):045005. PubMed ID: 24192136 [TBL] [Abstract][Full Text] [Related]
14. Osteogenic differentiation of umbilical cord and adipose derived stem cells onto highly porous 45S5 Bioglass®-based scaffolds. Detsch R; Alles S; Hum J; Westenberger P; Sieker F; Heusinger D; Kasper C; Boccaccini AR J Biomed Mater Res A; 2015 Mar; 103(3):1029-37. PubMed ID: 24853477 [TBL] [Abstract][Full Text] [Related]
15. Preparation of porous 45S5 Bioglass-derived glass-ceramic scaffolds by using rice husk as a porogen additive. Wu SC; Hsu HC; Hsiao SH; Ho WF J Mater Sci Mater Med; 2009 Jun; 20(6):1229-36. PubMed ID: 19160020 [TBL] [Abstract][Full Text] [Related]
16. Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation. Groh D; Döhler F; Brauer DS Acta Biomater; 2014 Oct; 10(10):4465-73. PubMed ID: 24880003 [TBL] [Abstract][Full Text] [Related]
17. Optimising bioactive glass scaffolds for bone tissue engineering. Jones JR; Ehrenfried LM; Hench LL Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812 [TBL] [Abstract][Full Text] [Related]
18. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology. Boccardi E; Melli V; Catignoli G; Altomare L; Jahromi MT; Cerruti M; Lefebvre LP; De Nardo L Biomed Mater; 2016 Feb; 11(1):015005. PubMed ID: 26836444 [TBL] [Abstract][Full Text] [Related]
19. In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds. Poh PSP; Hutmacher DW; Holzapfel BM; Solanki AK; Stevens MM; Woodruff MA Acta Biomater; 2016 Jan; 30():319-333. PubMed ID: 26563472 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior. Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]