These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28458045)

  • 1. The yeast ADH7 promoter enables gene expression under pronounced translation repression caused by the combined stress of vanillin, furfural, and 5-hydroxymethylfurfural.
    Ishida Y; Nguyen TTM; Izawa S
    J Biotechnol; 2017 Jun; 252():65-72. PubMed ID: 28458045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The VFH1 (YLL056C) promoter is vanillin-inducible and enables mRNA translation despite pronounced translation repression caused by severe vanillin stress in Saccharomyces cerevisiae.
    Nguyen TTM; Ishida Y; Kato S; Iwaki A; Izawa S
    Yeast; 2018 Jul; 35(7):465-475. PubMed ID: 29575020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prioritized Expression of BDH2 under Bulk Translational Repression and Its Contribution to Tolerance to Severe Vanillin Stress in Saccharomyces cerevisiae.
    Ishida Y; Nguyen TT; Kitajima S; Izawa S
    Front Microbiol; 2016; 7():1059. PubMed ID: 27458450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ADH7 Promoter of Saccharomyces cerevisiae is Vanillin-Inducible and Enables mRNA Translation Under Severe Vanillin Stress.
    Nguyen TT; Iwaki A; Izawa S
    Front Microbiol; 2015; 6():1390. PubMed ID: 26696995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae.
    Nguyen TT; Kitajima S; Izawa S
    J Biosci Bioeng; 2014 Sep; 118(3):263-9. PubMed ID: 24725964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP granules and attenuate translation activity in Saccharomyces cerevisiae.
    Iwaki A; Kawai T; Yamamoto Y; Izawa S
    Appl Environ Microbiol; 2013 Mar; 79(5):1661-7. PubMed ID: 23275506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.
    Zhao X; Tang J; Wang X; Yang R; Zhang X; Gu Y; Li X; Ma M
    Yeast; 2015 May; 32(5):409-22. PubMed ID: 25656244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 5-Hydroxymethylfurfural induces ADH7 and ARI1 expression in tolerant industrial Saccharomyces cerevisiae strain P6H9 during bioethanol production.
    Sehnem NT; Machado Ada S; Leite FC; Pita Wde B; de Morais MA; Ayub MA
    Bioresour Technol; 2013 Apr; 133():190-6. PubMed ID: 23422309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.
    Ishii J; Yoshimura K; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran.
    Liu ZL; Slininger PJ; Dien BS; Berhow MA; Kurtzman CP; Gorsich SW
    J Ind Microbiol Biotechnol; 2004 Sep; 31(8):345-52. PubMed ID: 15338422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.
    Hasunuma T; Ismail KSK; Nambu Y; Kondo A
    J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alcohol dehydrogenases from Scheffersomyces stipitis involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.
    Ma M; Wang X; Zhang X; Zhao X
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8411-25. PubMed ID: 23912116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH.
    Moon J; Liu ZL
    Enzyme Microb Technol; 2012 Feb; 50(2):115-20. PubMed ID: 22226197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.
    Liu ZL; Moon J; Andersh BJ; Slininger PJ; Weber S
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance.
    Wang X; Liang Z; Hou J; Bao X; Shen Y
    BMC Biotechnol; 2016 Apr; 16():31. PubMed ID: 27036139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae.
    Nguyen TT; Iwaki A; Ohya Y; Izawa S
    J Biosci Bioeng; 2014 Jan; 117(1):33-8. PubMed ID: 23850265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance.
    Petersson A; Almeida JR; Modig T; Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF; Lidén G
    Yeast; 2006 Apr; 23(6):455-64. PubMed ID: 16652391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae.
    Ma M; Liu ZL
    BMC Genomics; 2010 Nov; 11():660. PubMed ID: 21106074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production.
    Sasano Y; Watanabe D; Ukibe K; Inai T; Ohtsu I; Shimoi H; Takagi H
    J Biosci Bioeng; 2012 Apr; 113(4):451-5. PubMed ID: 22178024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains.
    Liu ZL; Slininger PJ; Gorsich SW
    Appl Biochem Biotechnol; 2005; 121-124():451-60. PubMed ID: 15917621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.