These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 28458059)

  • 1. Theory of pH changes in water desalination by capacitive deionization.
    Dykstra JE; Keesman KJ; Biesheuvel PM; van der Wal A
    Water Res; 2017 Aug; 119():178-186. PubMed ID: 28458059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unravelling pH Changes in Electrochemical Desalination with Capacitive Deionization.
    Arulrajan AC; Dykstra JE; van der Wal A; Porada S
    Environ Sci Technol; 2021 Oct; 55(20):14165-14172. PubMed ID: 34586796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes.
    Tang W; He D; Zhang C; Kovalsky P; Waite TD
    Water Res; 2017 Sep; 120():229-237. PubMed ID: 28500988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review.
    Zhang C; He D; Ma J; Tang W; Waite TD
    Water Res; 2018 Jan; 128():314-330. PubMed ID: 29107916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization.
    Hassanvand A; Chen GQ; Webley PA; Kentish SE
    Water Res; 2018 Mar; 131():100-109. PubMed ID: 29277078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of water treatment by capacitive deionization with redox active porous electrodes.
    He F; Biesheuvel PM; Bazant MZ; Hatton TA
    Water Res; 2018 Apr; 132():282-291. PubMed ID: 29331915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equilibria model for pH variations and ion adsorption in capacitive deionization electrodes.
    Hemmatifar A; Oyarzun DI; Palko JW; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2017 Oct; 122():387-397. PubMed ID: 28622631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resistance identification and rational process design in Capacitive Deionization.
    Dykstra JE; Zhao R; Biesheuvel PM; van der Wal A
    Water Res; 2016 Jan; 88():358-370. PubMed ID: 26512814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear dynamics of capacitive charging and desalination by porous electrodes.
    Biesheuvel PM; Bazant MZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031502. PubMed ID: 20365735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer.
    Kim YJ; Choi JH
    Water Res; 2010 Feb; 44(3):990-6. PubMed ID: 19896691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination.
    Liang P; Yuan L; Yang X; Zhou S; Huang X
    Water Res; 2013 May; 47(7):2523-30. PubMed ID: 23497976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentration-Gradient Multichannel Flow-Stream Membrane Capacitive Deionization Cell for High Desalination Capacity of Carbon Electrodes.
    Kim C; Lee J; Srimuk P; Aslan M; Presser V
    ChemSusChem; 2017 Dec; 10(24):4914-4920. PubMed ID: 28685992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stable operation method for membrane capacitive deionization systems without electrode reactions at high cell potentials.
    Choi JH; Yoon DJ
    Water Res; 2019 Jun; 157():167-174. PubMed ID: 30953851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrosorptive removal of salt ions from water by membrane capacitive deionization (MCDI): characterization, adsorption equilibrium, and kinetics.
    Li G; Cai W; Zhao R; Hao L
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17787-17796. PubMed ID: 31030403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of salt adsorption rate in membrane capacitive deionization.
    Zhao R; Satpradit O; Rijnaarts HH; Biesheuvel PM; van der Wal A
    Water Res; 2013 Apr; 47(5):1941-52. PubMed ID: 23395310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical framework for designing a desalination plant based on membrane capacitive deionization.
    Wang L; Lin S
    Water Res; 2019 Jul; 158():359-369. PubMed ID: 31055016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water desalination using capacitive deionization with microporous carbon electrodes.
    Porada S; Weinstein L; Dash R; van der Wal A; Bryjak M; Gogotsi Y; Biesheuvel PM
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1194-9. PubMed ID: 22329838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage.
    Kim T; Dykstra JE; Porada S; van der Wal A; Yoon J; Biesheuvel PM
    J Colloid Interface Sci; 2015 May; 446():317-26. PubMed ID: 25278271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Redox-Active Flow Electrodes for High-Performance Capacitive Deionization.
    Ma J; He D; Tang W; Kovalsky P; He C; Zhang C; Waite TD
    Environ Sci Technol; 2016 Dec; 50(24):13495-13501. PubMed ID: 27993056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrahigh-Desalination-Capacity Dual-Ion Electrochemical Deionization Device Based on Na
    Zhao W; Guo L; Ding M; Huang Y; Yang HY
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40540-40548. PubMed ID: 30372016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.