These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 2845816)

  • 1. Independent blockade of cerebral vasodilation from acetylcholine and nitric oxide.
    Marshall JJ; Wei EP; Kontos HA
    Am J Physiol; 1988 Oct; 255(4 Pt 2):H847-54. PubMed ID: 2845816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects in cats of inhibition of nitric oxide synthesis on cerebral vasodilation and endothelium-derived relaxing factor from acetylcholine.
    Wei EP; Kukreja R; Kontos HA
    Stroke; 1992 Nov; 23(11):1623-8; discussion 1628-9. PubMed ID: 1440711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H2O2 and endothelium-dependent cerebral arteriolar dilation. Implications for the identity of endothelium-derived relaxing factor generated by acetylcholine.
    Wei EP; Kontos HA
    Hypertension; 1990 Aug; 16(2):162-9. PubMed ID: 2379949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition by arachidonate of cerebral arteriolar dilation from acetylcholine.
    Kontos HA; Wei EP; Povlishock JT; Kukreja RC; Hess ML
    Am J Physiol; 1989 Mar; 256(3 Pt 2):H665-71. PubMed ID: 2538081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyl radical-dependent inactivation of guanylate cyclase in cerebral arterioles by methylene blue and by LY83583.
    Kontos HA; Wei EP
    Stroke; 1993 Mar; 24(3):427-34. PubMed ID: 8095358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in endothelium-dependent cerebral dilation by bradykinin and acetylcholine.
    Kontos HA; Wei EP; Kukreja RC; Ellis EF; Hess ML
    Am J Physiol; 1990 May; 258(5 Pt 2):H1261-6. PubMed ID: 2337161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide generation and reversal of acetylcholine-induced cerebral arteriolar dilation after acute hypertension.
    Wei EP; Kontos HA; Christman CW; DeWitt DS; Povlishock JT
    Circ Res; 1985 Nov; 57(5):781-7. PubMed ID: 4053309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelium-dependent responses after experimental brain injury.
    Kontos HA; Wei EP
    J Neurotrauma; 1992; 9(4):349-54. PubMed ID: 1291694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylene blue inhibits vasodilation of skeletal muscle arterioles to acetylcholine and nitric oxide via the extracellular generation of superoxide anion.
    Wolin MS; Cherry PD; Rodenburg JM; Messina EJ; Kaley G
    J Pharmacol Exp Ther; 1990 Sep; 254(3):872-6. PubMed ID: 2168487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelium-associated vasodilators in rat skeletal muscle microcirculation.
    Kaley G; Rodenburg JM; Messina EJ; Wolin MS
    Am J Physiol; 1989 Mar; 256(3 Pt 2):H720-5. PubMed ID: 2493747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo effect of methylene blue on endothelium-dependent and endothelium-independent dilations of brain microvessels in mice.
    Watanabe M; Rosenblum WI; Nelson GH
    Circ Res; 1988 Jan; 62(1):86-90. PubMed ID: 2826044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is nitric oxide the only endothelium-derived relaxing factor in canine femoral veins?
    Miller VM; Vanhoutte PM
    Am J Physiol; 1989 Dec; 257(6 Pt 2):H1910-6. PubMed ID: 2513730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen radicals mediate the cerebral arteriolar dilation from arachidonate and bradykinin in cats.
    Kontos HA; Wei EP; Povlishock JT; Christman CW
    Circ Res; 1984 Sep; 55(3):295-303. PubMed ID: 6432360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylene blue selectively inhibits pulmonary vasodilator responses in cats.
    Hyman AL; Kadowitz PJ; Lippton HL
    J Appl Physiol (1985); 1989 Mar; 66(3):1513-7. PubMed ID: 2468643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Similarities in the pharmacological modulation of reactive hyperemia and vasodilation to hydrogen peroxide in rat skeletal muscle arterioles: effects of probes for endothelium-derived mediators.
    Wolin MS; Rodenburg JM; Messina EJ; Kaley G
    J Pharmacol Exp Ther; 1990 May; 253(2):508-12. PubMed ID: 2338645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of postischemic hypoperfusion on vasodilatory mechanisms in cats.
    Clavier N; Kirsch JR; Hurn PD; Traystman RJ
    Am J Physiol; 1994 Nov; 267(5 Pt 2):H2012-8. PubMed ID: 7977832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo bioassay of endothelium-derived relaxing factor.
    Kontos HA; Wei EP; Marshall JJ
    Am J Physiol; 1988 Nov; 255(5 Pt 2):H1259-62. PubMed ID: 3142279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta.
    Martin W; Villani GM; Jothianandan D; Furchgott RF
    J Pharmacol Exp Ther; 1985 Mar; 232(3):708-16. PubMed ID: 2983068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attenuation of contractions to acetylcholine in canine bronchi by an endogenous nitric oxide-like substance.
    Gao Y; Vanhoutte PM
    Br J Pharmacol; 1993 Jul; 109(3):887-91. PubMed ID: 8395301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide and S-nitroso-L-cysteine as endothelium-derived relaxing factors from acetylcholine in cerebral vessels in cats.
    Kukreja RC; Wei EP; Kontos HA; Bates JN
    Stroke; 1993 Dec; 24(12):2010-4; discussion 2014-5. PubMed ID: 8248984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.