These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 28458213)
1. Decapitation improves the efficiency of Cd phytoextraction by Celosia argentea Linn. Liu J; Zhang X; Mo L; Yao S; Wang Y Chemosphere; 2017 Aug; 181():382-389. PubMed ID: 28458213 [TBL] [Abstract][Full Text] [Related]
2. Effects of decapitation and root cutting on phytoremediation efficiency of Celosia argentea. Ning W; Li W; Pi W; Xu Y; Cao M; Luo J Ecotoxicol Environ Saf; 2021 Jun; 215():112162. PubMed ID: 33756287 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous hyperaccumulation of cadmium and manganese in Celosia argentea Linn. Liu J; Mo L; Zhang X; Yao S; Wang Y Int J Phytoremediation; 2018 Sep; 20(11):1106-1112. PubMed ID: 30156923 [TBL] [Abstract][Full Text] [Related]
4. Phytoextraction of cadmium-contaminated soil by Celosia argentea Linn.: A long-term field study. Yu G; Jiang P; Fu X; Liu J; Sunahara GI; Chen Z; Xiao H; Lin F; Wang X Environ Pollut; 2020 Nov; 266(Pt 1):115408. PubMed ID: 32829173 [TBL] [Abstract][Full Text] [Related]
5. Mn accumulation and tolerance in Celosia argentea Linn.: a new Mn-hyperaccumulating plant species. Liu J; Shang W; Zhang X; Zhu Y; Yu K J Hazard Mater; 2014 Feb; 267():136-41. PubMed ID: 24444455 [TBL] [Abstract][Full Text] [Related]
6. Rotation of Celosia argentea and Sedum plumbizincicola promotes Cd phytoextraction efficiency. Liu J; Jiang X; Zhang X; Jiang P; Yu G J Hazard Mater; 2024 Jul; 472():134551. PubMed ID: 38743979 [TBL] [Abstract][Full Text] [Related]
7. Effect of hesperidin on growth, photosynthesis, antioxidant systems and uptake of cadmium, copper, chromium and zinc by Celosia argentea plants. Hussain M; Hafeez A; Al-Huqail AA; Alsudays IM; Alghanem SMS; Ashraf MA; Rasheed R; Rizwan M; Abeed AHA Plant Physiol Biochem; 2024 Feb; 207():108433. PubMed ID: 38364631 [TBL] [Abstract][Full Text] [Related]
8. Phytoextraction of cadmium-contaminated soils: comparison of plant species and low molecular weight organic acids. Yu G; Liu J; Long Y; Chen Z; Sunahara GI; Jiang P; You S; Lin H; Xiao H Int J Phytoremediation; 2020; 22(4):383-391. PubMed ID: 31522543 [TBL] [Abstract][Full Text] [Related]
9. Mn Pretreatment Improves the Physiological Resistance and Root Exudation of You S; Deng Z; Chen M; Zheng Y; Liu J; Jiang P Int J Environ Res Public Health; 2023 Jan; 20(2):. PubMed ID: 36673822 [TBL] [Abstract][Full Text] [Related]
10. Impact of O Han L; Yang G; Qin Y; Wang H; Cao M; Luo J Chemosphere; 2021 Mar; 266():128940. PubMed ID: 33218720 [TBL] [Abstract][Full Text] [Related]
11. Phytoremediation and environmental effects of three Amaranthaceae plants in contaminated soil under intercropping systems. Huang R; Xing C; Yang Y; Yu W; Zeng L; Li Y; Tan Z; Li Z Sci Total Environ; 2024 Mar; 914():169900. PubMed ID: 38199378 [TBL] [Abstract][Full Text] [Related]
12. Impacts of root pruning intensity and direction on the phytoremediation of moderately Cd-polluted soil by Tang Y; Gan T; Cao M; Song J; Chen D; Luo J Int J Phytoremediation; 2022; 24(11):1152-1162. PubMed ID: 34872411 [TBL] [Abstract][Full Text] [Related]
13. Identification of a new potential Cd-hyperaccumulator Solanum photeinocarpum by soil seed bank-metal concentration gradient method. Zhang X; Xia H; Li Z; Zhuang P; Gao B J Hazard Mater; 2011 May; 189(1-2):414-9. PubMed ID: 21397392 [TBL] [Abstract][Full Text] [Related]
14. Pathways of cadmium fluxes in the root of the hyperaccumulator Celosia argentea Linn. Jiang P; Zheng Y; Liu J; Yu G; Lin F Environ Sci Pollut Res Int; 2022 Jun; 29(29):44413-44421. PubMed ID: 35137315 [TBL] [Abstract][Full Text] [Related]
15. Effect of using Celosia argentea grown from seeds treated with a magnetic field to conduct Cd phytoremediation in drought stress conditions. Yang P; Gan T; Pi W; Cao M; Chen D; Luo J Chemosphere; 2021 Oct; 280():130724. PubMed ID: 34162085 [TBL] [Abstract][Full Text] [Related]
16. Cadmium phytoextraction potential of king grass (Pennisetum sinese Roxb.) and responses of rhizosphere bacterial communities to a cadmium pollution gradient. Hu L; Wang R; Liu X; Xu B; Xie T; Li Y; Wang M; Wang G; Chen Y Environ Sci Pollut Res Int; 2018 Aug; 25(22):21671-21681. PubMed ID: 29785604 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of phytoremediation potential of five Cd (hyper)accumulators in two Cd contaminated soils. Huang R; Dong M; Mao P; Zhuang P; Paz-Ferreiro J; Li Y; Li Y; Hu X; Netherway P; Li Z Sci Total Environ; 2020 Jun; 721():137581. PubMed ID: 32163732 [TBL] [Abstract][Full Text] [Related]
18. A comparative study of cadmium phytoextraction by accumulator and weed species. Ghosh M; Singh SP Environ Pollut; 2005 Jan; 133(2):365-71. PubMed ID: 15519467 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of three ornamental plants for phytoremediation of Pb-contamined soil. Cui S; Zhang T; Zhao S; Li P; Zhou Q; Zhang Q; Han Q Int J Phytoremediation; 2013; 15(4):299-306. PubMed ID: 23487996 [TBL] [Abstract][Full Text] [Related]
20. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]