These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 28458739)

  • 1. Thermal rejuvenation in metallic glasses.
    Saida J; Yamada R; Wakeda M; Ogata S
    Sci Technol Adv Mater; 2017; 18(1):152-162. PubMed ID: 28458739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous structural changes correlated to local atomic order in thermal rejuvenation process of Cu-Zr metallic glass.
    Wakeda M; Saida J
    Sci Technol Adv Mater; 2019; 20(1):632-642. PubMed ID: 31258826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and mechanical properties of highly structure-controlled Zr-based metallic glasses by thermal rejuvenation technique.
    Guo W; Niiyama T; Yamada R; Wakeda M; Saida J
    J Phys Condens Matter; 2023 Feb; 35(15):. PubMed ID: 36731175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rejuvenation of metallic glasses by non-affine thermal strain.
    Ketov SV; Sun YH; Nachum S; Lu Z; Checchi A; Beraldin AR; Bai HY; Wang WH; Louzguine-Luzgin DV; Carpenter MA; Greer AL
    Nature; 2015 Aug; 524(7564):200-3. PubMed ID: 26268190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled rejuvenation of amorphous metals with thermal processing.
    Wakeda M; Saida J; Li J; Ogata S
    Sci Rep; 2015 May; 5():10545. PubMed ID: 26010470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural instability of metallic glasses under radio-frequency-ultrasonic perturbation and its correlation with glass-to-crystal transition of less-stable metallic glasses.
    Ichitsubo T; Matsubara E; Chen HS; Saida J; Yamamoto T; Nishiyama N
    J Chem Phys; 2006 Oct; 125(15):154502. PubMed ID: 17059267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesizing of Novel Bulk (Zr
    El-Eskandarany MS; Ali N
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32326121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-way tuning of structural order in metallic glasses.
    Lou H; Zeng Z; Zhang F; Chen S; Luo P; Chen X; Ren Y; Prakapenka VB; Prescher C; Zuo X; Li T; Wen J; Wang WH; Sheng H; Zeng Q
    Nat Commun; 2020 Jan; 11(1):314. PubMed ID: 31949139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase Transformations from Nanocrystalline to Amorphous (Zr
    El-Eskandarany MS; Ali N; Al-Ajmi F; Banyan M
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxation and Strain-Hardening Relationships in Highly Rejuvenated Metallic Glasses.
    Yuan X; Şopu D; Song K; Eckert J
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rejuvenation of Zr-Based Bulk Metallic Glasses by Ultrasonic Vibration-Assisted Elastic Deformation.
    Lou Y; Xv S; Liu Z; Ma J
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33023092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extreme rejuvenation and softening in a bulk metallic glass.
    Pan J; Wang YX; Guo Q; Zhang D; Greer AL; Li Y
    Nat Commun; 2018 Feb; 9(1):560. PubMed ID: 29422622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-temperature bulk metallic glasses developed by combinatorial methods.
    Li MX; Zhao SF; Lu Z; Hirata A; Wen P; Bai HY; Chen M; Schroers J; Liu Y; Wang WH
    Nature; 2019 May; 569(7754):99-103. PubMed ID: 31043727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast extreme rejuvenation of metallic glasses by shock compression.
    Ding G; Li C; Zaccone A; Wang WH; Lei HC; Jiang F; Ling Z; Jiang MQ
    Sci Adv; 2019 Aug; 5(8):eaaw6249. PubMed ID: 31467974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of monatomic metallic glasses through ultrafast liquid quenching.
    Zhong L; Wang J; Sheng H; Zhang Z; Mao SX
    Nature; 2014 Aug; 512(7513):177-80. PubMed ID: 25119235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beating Homogeneous Nucleation and Tuning Atomic Ordering in Glass-Forming Metals by Nanocalorimetry.
    Zhao B; Yang B; Abyzov AS; Schmelzer JWP; Rodríguez-Viejo J; Zhai Q; Schick C; Gao Y
    Nano Lett; 2017 Dec; 17(12):7751-7760. PubMed ID: 29111758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling the Structural Statistics and Its Relationship with Mechanical Properties in Metallic Glasses.
    Yang YC; Xia Z; Mukherjee S
    Nano Lett; 2021 Nov; 21(21):9108-9114. PubMed ID: 34669420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards the Better: Intrinsic Property Amelioration in Bulk Metallic Glasses.
    Sarac B; Zhang L; Kosiba K; Pauly S; Stoica M; Eckert J
    Sci Rep; 2016 Jun; 6():27271. PubMed ID: 27273477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-dynamics relationships in cryogenically deformed bulk metallic glass.
    Spieckermann F; Şopu D; Soprunyuk V; Kerber MB; Bednarčík J; Schökel A; Rezvan A; Ketov S; Sarac B; Schafler E; Eckert J
    Nat Commun; 2022 Jan; 13(1):127. PubMed ID: 35013192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural origin for vibration-induced accelerated aging and rejuvenation in metallic glasses.
    Zhou ZY; Peng HL; Yu HB
    J Chem Phys; 2019 May; 150(20):204507. PubMed ID: 31153173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.