These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
743 related articles for article (PubMed ID: 28459449)
41. Epithelial Smad4 Deletion Up-Regulates Inflammation and Promotes Inflammation-Associated Cancer. Means AL; Freeman TJ; Zhu J; Woodbury LG; Marincola-Smith P; Wu C; Meyer AR; Weaver CJ; Padmanabhan C; An H; Zi J; Wessinger BC; Chaturvedi R; Brown TD; Deane NG; Coffey RJ; Wilson KT; Smith JJ; Sawyers CL; Goldenring JR; Novitskiy SV; Washington MK; Shi C; Beauchamp RD Cell Mol Gastroenterol Hepatol; 2018; 6(3):257-276. PubMed ID: 30109253 [TBL] [Abstract][Full Text] [Related]
42. Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption. Johansen AK; Molenaar B; Versteeg D; Leitoguinho AR; Demkes C; Spanjaard B; de Ruiter H; Akbari Moqadam F; Kooijman L; Zentilin L; Giacca M; van Rooij E Circ Res; 2017 Oct; 121(10):1168-1181. PubMed ID: 28851809 [TBL] [Abstract][Full Text] [Related]
43. A genome-scale CRISPR screen reveals factors regulating Wnt-dependent renewal of mouse gastric epithelial cells. Murakami K; Terakado Y; Saito K; Jomen Y; Takeda H; Oshima M; Barker N Proc Natl Acad Sci U S A; 2021 Jan; 118(4):. PubMed ID: 33479180 [TBL] [Abstract][Full Text] [Related]
44. Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma. Liang C; Li F; Wang L; Zhang ZK; Wang C; He B; Li J; Chen Z; Shaikh AB; Liu J; Wu X; Peng S; Dang L; Guo B; He X; Au DWT; Lu C; Zhu H; Zhang BT; Lu A; Zhang G Biomaterials; 2017 Dec; 147():68-85. PubMed ID: 28938163 [TBL] [Abstract][Full Text] [Related]
45. Novel Thrombotic Function of a Human SNP in STXBP5 Revealed by CRISPR/Cas9 Gene Editing in Mice. Zhu QM; Ko KA; Ture S; Mastrangelo MA; Chen MH; Johnson AD; O'Donnell CJ; Morrell CN; Miano JM; Lowenstein CJ Arterioscler Thromb Vasc Biol; 2017 Feb; 37(2):264-270. PubMed ID: 28062498 [TBL] [Abstract][Full Text] [Related]
46. Overview of genetically engineered mouse models of colorectal carcinoma to enable translational biology and drug development. Roper J; Martin ES; Hung KE Curr Protoc Pharmacol; 2014 Jun; 65():14.29.1-10. PubMed ID: 24934606 [TBL] [Abstract][Full Text] [Related]
47. The CK1δ/ε-AES axis regulates tumorigenesis and metastasis in colorectal cancer. Wang Z; Zhou L; Wang Y; Peng Q; Li H; Zhang X; Su Z; Song J; Sun Q; Sayed S; Liu S; Lu D Theranostics; 2021; 11(9):4421-4435. PubMed ID: 33754069 [No Abstract] [Full Text] [Related]
48. CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Chen M; Mao A; Xu M; Weng Q; Mao J; Ji J Cancer Lett; 2019 Apr; 447():48-55. PubMed ID: 30684591 [TBL] [Abstract][Full Text] [Related]
49. Application of CRISPR-Cas9-Mediated Genome Editing for the Treatment of Myotonic Dystrophy Type 1. Marsh S; Hanson B; Wood MJA; Varela MA; Roberts TC Mol Ther; 2020 Dec; 28(12):2527-2539. PubMed ID: 33171139 [TBL] [Abstract][Full Text] [Related]
50. CRISPR Gene Editing in the Kidney. Cruz NM; Freedman BS Am J Kidney Dis; 2018 Jun; 71(6):874-883. PubMed ID: 29606501 [TBL] [Abstract][Full Text] [Related]
51. The Long Noncoding RNA CCAT2 Induces Chromosomal Instability Through BOP1-AURKB Signaling. Chen B; Dragomir MP; Fabris L; Bayraktar R; Knutsen E; Liu X; Tang C; Li Y; Shimura T; Ivkovic TC; De Los Santos MC; Anfossi S; Shimizu M; Shah MY; Ling H; Shen P; Multani AS; Pardini B; Burks JK; Katayama H; Reineke LC; Huo L; Syed M; Song S; Ferracin M; Oki E; Fromm B; Ivan C; Bhuvaneshwar K; Gusev Y; Mimori K; Menter D; Sen S; Matsuyama T; Uetake H; Vasilescu C; Kopetz S; Parker-Thornburg J; Taguchi A; Hanash SM; Girnita L; Slaby O; Goel A; Varani G; Gagea M; Li C; Ajani JA; Calin GA Gastroenterology; 2020 Dec; 159(6):2146-2162.e33. PubMed ID: 32805281 [TBL] [Abstract][Full Text] [Related]
52. PTEN loss and KRAS activation leads to the formation of serrated adenomas and metastatic carcinoma in the mouse intestine. Davies EJ; Marsh Durban V; Meniel V; Williams GT; Clarke AR J Pathol; 2014 May; 233(1):27-38. PubMed ID: 24293351 [TBL] [Abstract][Full Text] [Related]
53. Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Steinhart Z; Pavlovic Z; Chandrashekhar M; Hart T; Wang X; Zhang X; Robitaille M; Brown KR; Jaksani S; Overmeer R; Boj SF; Adams J; Pan J; Clevers H; Sidhu S; Moffat J; Angers S Nat Med; 2017 Jan; 23(1):60-68. PubMed ID: 27869803 [TBL] [Abstract][Full Text] [Related]
54. CRISPR base editing applications for identifying cancer-driving mutations. Pal M; Herold MJ Biochem Soc Trans; 2021 Feb; 49(1):269-280. PubMed ID: 33449100 [TBL] [Abstract][Full Text] [Related]
55. Wnt-driven LARGE2 mediates laminin-adhesive O-glycosylation in human colonic epithelial cells and colorectal cancer. Dietinger V; García de Durango CR; Wiechmann S; Boos SL; Michl M; Neumann J; Hermeking H; Kuster B; Jung P Cell Commun Signal; 2020 Jun; 18(1):102. PubMed ID: 32586342 [TBL] [Abstract][Full Text] [Related]
56. A Duplex CRISPR-Cas9 Ribonucleoprotein Nanomedicine for Colorectal Cancer Gene Therapy. Wan T; Pan Q; Liu C; Guo J; Li B; Yan X; Cheng Y; Ping Y Nano Lett; 2021 Nov; 21(22):9761-9771. PubMed ID: 34767372 [TBL] [Abstract][Full Text] [Related]
57. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences. Stamatiadis P; Boel A; Cosemans G; Popovic M; Bekaert B; Guggilla R; Tang M; De Sutter P; Van Nieuwerburgh F; Menten B; Stoop D; Chuva de Sousa Lopes SM; Coucke P; Heindryckx B Hum Reprod; 2021 Apr; 36(5):1242-1252. PubMed ID: 33609360 [TBL] [Abstract][Full Text] [Related]
58. An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Aubrey BJ; Kelly GL; Kueh AJ; Brennan MS; O'Connor L; Milla L; Wilcox S; Tai L; Strasser A; Herold MJ Cell Rep; 2015 Mar; 10(8):1422-32. PubMed ID: 25732831 [TBL] [Abstract][Full Text] [Related]
59. In vivo genome-editing screen identifies tumor suppressor genes that cooperate with Trp53 loss during mammary tumorigenesis. Heitink L; Whittle JR; Vaillant F; Capaldo BD; Dekkers JF; Dawson CA; Milevskiy MJG; Surgenor E; Tsai M; Chen HR; Christie M; Chen Y; Smyth GK; Herold MJ; Strasser A; Lindeman GJ; Visvader JE Mol Oncol; 2022 Mar; 16(5):1119-1131. PubMed ID: 35000262 [TBL] [Abstract][Full Text] [Related]
60. Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review. Ebrahimi V; Hashemi A Gene; 2020 Aug; 753():144813. PubMed ID: 32470504 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]