BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 28459528)

  • 1. The A-Rule and Deletion Formation During Abasic and Oxidized Abasic Site Bypass by DNA Polymerase θ.
    Laverty DJ; Averill AM; Doublié S; Greenberg MM
    ACS Chem Biol; 2017 Jun; 12(6):1584-1592. PubMed ID: 28459528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro effects of a C4'-oxidized abasic site on DNA polymerases.
    Greenberg MM; Weledji YN; Kroeger KM; Kim J; Goodman MF
    Biochemistry; 2004 Mar; 43(9):2656-63. PubMed ID: 14992603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replication of an oxidized abasic site in Escherichia coli by a dNTP-stabilized misalignment mechanism that reads upstream and downstream nucleotides.
    Kroeger KM; Kim J; Goodman MF; Greenberg MM
    Biochemistry; 2006 Apr; 45(15):5048-56. PubMed ID: 16605273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repair of oxidized abasic sites by exonuclease III, endonuclease IV, and endonuclease III.
    Greenberg MM; Weledji YN; Kim J; Bales BC
    Biochemistry; 2004 Jun; 43(25):8178-83. PubMed ID: 15209514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutagenic effects of 2-deoxyribonolactone in Escherichia coli. An abasic lesion that disobeys the A-rule.
    Kroeger KM; Jiang YL; Kow YW; Goodman MF; Greenberg MM
    Biochemistry; 2004 Jun; 43(21):6723-33. PubMed ID: 15157106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long patch base excision repair compensates for DNA polymerase β inactivation by the C4'-oxidized abasic site.
    Jacobs AC; Kreller CR; Greenberg MM
    Biochemistry; 2011 Jan; 50(1):136-43. PubMed ID: 21155533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro replication and repair of DNA containing a C2'-oxidized abasic site.
    Greenberg MM; Weledji YN; Kroeger KM; Kim J
    Biochemistry; 2004 Dec; 43(48):15217-22. PubMed ID: 15568814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanded Substrate Scope of DNA Polymerase θ and DNA Polymerase β: Lyase Activity on 5'-Overhangs and Clustered Lesions.
    Laverty DJ; Greenberg MM
    Biochemistry; 2018 Oct; 57(42):6119-6127. PubMed ID: 30299084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA polymerase mutagenic bypass and proofreading of endogenous DNA lesions.
    Eckert KA; Opresko PL
    Mutat Res; 1999 Mar; 424(1-2):221-36. PubMed ID: 10064863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the C4'-oxidized abasic site on replication in Escherichia coli. An unusually large deletion is induced by a small lesion.
    Kroeger KM; Kim J; Goodman MF; Greenberg MM
    Biochemistry; 2004 Nov; 43(43):13621-7. PubMed ID: 15504024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutagenic Bypass of an Oxidized Abasic Lesion-Induced DNA Interstrand Cross-Link Analogue by Human Translesion Synthesis DNA Polymerases.
    Xu W; Ouellette A; Ghosh S; O'Neill TC; Greenberg MM; Zhao L
    Biochemistry; 2015 Dec; 54(50):7409-22. PubMed ID: 26626537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human DNA polymerases lambda and beta show different efficiencies of translesion DNA synthesis past abasic sites and alternative mechanisms for frameshift generation.
    Blanca G; Villani G; Shevelev I; Ramadan K; Spadari S; Hübscher U; Maga G
    Biochemistry; 2004 Sep; 43(36):11605-15. PubMed ID: 15350147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abasic and oxidized abasic site reactivity in DNA: enzyme inhibition, cross-linking, and nucleosome catalyzed reactions.
    Greenberg MM
    Acc Chem Res; 2014 Feb; 47(2):646-55. PubMed ID: 24369694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA polymerase λ inactivation by oxidized abasic sites.
    Stevens AJ; Guan L; Bebenek K; Kunkel TA; Greenberg MM
    Biochemistry; 2013 Feb; 52(5):975-83. PubMed ID: 23330920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vitro Bypass of Thymidine Glycol by DNA Polymerase θ Forms Sequence-Dependent Frameshift Mutations.
    Laverty DJ; Greenberg MM
    Biochemistry; 2017 Dec; 56(51):6726-6733. PubMed ID: 29243925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abasic translesion synthesis by DNA polymerase beta violates the "A-rule". Novel types of nucleotide incorporation by human DNA polymerase beta at an abasic lesion in different sequence contexts.
    Efrati E; Tocco G; Eritja R; Wilson SH; Goodman MF
    J Biol Chem; 1997 Jan; 272(4):2559-69. PubMed ID: 8999973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutagenic effects of abasic and oxidized abasic lesions in Saccharomyces cerevisiae.
    Kow YW; Bao G; Minesinger B; Jinks-Robertson S; Siede W; Jiang YL; Greenberg MM
    Nucleic Acids Res; 2005; 33(19):6196-202. PubMed ID: 16257982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The efficiency and specificity of apurinic/apyrimidinic site bypass by human DNA polymerase eta and Sulfolobus solfataricus Dpo4.
    Kokoska RJ; McCulloch SD; Kunkel TA
    J Biol Chem; 2003 Dec; 278(50):50537-45. PubMed ID: 14523013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of DNA polymerase eta in the bypass of abasic sites in yeast cells.
    Zhao B; Xie Z; Shen H; Wang Z
    Nucleic Acids Res; 2004; 32(13):3984-94. PubMed ID: 15284331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro gap-directed translesion DNA synthesis of an abasic site involving human DNA polymerases epsilon, lambda, and beta.
    Villani G; Hubscher U; Gironis N; Parkkinen S; Pospiech H; Shevelev I; di Cicco G; Markkanen E; Syväoja JE; Tanguy Le Gac N
    J Biol Chem; 2011 Sep; 286(37):32094-104. PubMed ID: 21757740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.