These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28459548)

  • 1. Addressable Direct-Write Nanoscale Filament Formation and Dissolution by Nanoparticle-Mediated Bipolar Electrochemistry.
    Crouch GM; Han D; Fullerton-Shirey SK; Go DB; Bohn PW
    ACS Nano; 2017 May; 11(5):4976-4984. PubMed ID: 28459548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct-Write Formation and Dissolution of Silver Nanofilaments in Ionic Liquid-Polymer Electrolyte Composites.
    Chao Z; Radka BP; Xu K; Crouch GM; Han D; Go DB; Bohn PW; Fullerton-Shirey SK
    Small; 2018 Sep; 14(39):e1802023. PubMed ID: 30118585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electro-Forming and Electro-Breaking of Nanoscale Ag Filaments for Conductive-Bridging Random-Access Memory Cell using Ag-Doped Polymer-Electrolyte between Pt Electrodes.
    Song MJ; Kwon KH; Park JG
    Sci Rep; 2017 Jun; 7(1):3065. PubMed ID: 28596546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Compliant Threshold Switching Devices with High On/Off ratio by Control of Quantized Conductance in Ag Filaments.
    Song M; Lee S; Nibhanupudi SST; Singh JV; Disiena M; Luth CJ; Wu S; Coupin MJ; Warner JH; Banerjee SK
    Nano Lett; 2023 Apr; 23(7):2952-2957. PubMed ID: 36996390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism for Conducting Filament Growth in Self-Assembled Polymer Thin Films for Redox-Based Atomic Switches.
    Krishnan K; Tsuruoka T; Mannequin C; Aono M
    Adv Mater; 2016 Jan; 28(4):640-8. PubMed ID: 26576756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliable Memristive Switching Memory Devices Enabled by Densely Packed Silver Nanocone Arrays as Electric-Field Concentrators.
    You BK; Kim JM; Joe DJ; Yang K; Shin Y; Jung YS; Lee KJ
    ACS Nano; 2016 Oct; 10(10):9478-9488. PubMed ID: 27718554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TEM Nanostructural Investigation of Ag-Conductive Filaments in Polycrystalline ZnO-Based Resistive Switching Devices.
    Bejtka K; Milano G; Ricciardi C; Pirri CF; Porro S
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29451-29460. PubMed ID: 32508083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guiding the Growth of a Conductive Filament by Nanoindentation To Improve Resistive Switching.
    Sun Y; Song C; Yin J; Chen X; Wan Q; Zeng F; Pan F
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34064-34070. PubMed ID: 28901743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational Design on Controllable Cation Injection with Improved Conductive-Bridge Random Access Memory by Glancing Angle Deposition Technology toward Neuromorphic Application.
    Shih YC; Shen YC; Cheng YK; Chaudhary M; Yang TY; Yu YJ; Chueh YL
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55470-55480. PubMed ID: 34775743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conductance quantization in a Ag filament-based polymer resistive memory.
    Gao S; Zeng F; Chen C; Tang G; Lin Y; Zheng Z; Song C; Pan F
    Nanotechnology; 2013 Aug; 24(33):335201. PubMed ID: 23893907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local thermomechanical analysis of a microphase-separated thin lamellar PS-b-PEO film.
    Rice RH; Mokarian-Tabari P; King WP; Szoszkiewicz R
    Langmuir; 2012 Sep; 28(37):13503-11. PubMed ID: 22924663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging the Three-Dimensional Conductive Channel in Filamentary-Based Oxide Resistive Switching Memory.
    Celano U; Goux L; Degraeve R; Fantini A; Richard O; Bender H; Jurczak M; Vandervorst W
    Nano Lett; 2015 Dec; 15(12):7970-5. PubMed ID: 26523952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance Flexible Polymer Memristor Based on Stable Filamentary Switching.
    Zhang X; Wu C; Lv Y; Zhang Y; Liu W
    Nano Lett; 2022 Sep; 22(17):7246-7253. PubMed ID: 35984717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ag filament induced nonvolatile resistive switching memory behaviour in hexagonal MoSe
    Han P; Sun B; Li J; Li T; Shi Q; Jiao B; Wu Q; Zhang X
    J Colloid Interface Sci; 2017 Nov; 505():148-153. PubMed ID: 28577464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved bipolar resistive switching memory characteristics in Ge0.5Se0.5 solid electrolyte by using dispersed silver nanocrystals on bottom electrode.
    Kim JH; Nam KH; Hwang I; Cho WJ; Park B; Chung HB
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9498-503. PubMed ID: 25971090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analog Switching and Artificial Synaptic Behavior of Ag/SiO
    Ilyas N; Li D; Li C; Jiang X; Jiang Y; Li W
    Nanoscale Res Lett; 2020 Jan; 15(1):30. PubMed ID: 32006131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible conductive-bridging random-access-memory cell vertically stacked with top Ag electrode, PEO, PVK, and bottom Pt electrode.
    Seung HM; Kwon KC; Lee GS; Park JG
    Nanotechnology; 2014 Oct; 25(43):435204. PubMed ID: 25297517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanopore-Templated Silver Nanoparticle Arrays Photopolymerized in Zero-Mode Waveguides.
    Han D; Crouch GM; Chao Z; Fullerton-Shirey SK; Go DB; Bohn PW
    Front Chem; 2019; 7():216. PubMed ID: 31024900
    [No Abstract]   [Full Text] [Related]  

  • 19. Nanoscale Plasmon-Enhanced Spectroscopy in Memristive Switches.
    Di Martino G; Tappertzhofen S; Hofmann S; Baumberg J
    Small; 2016 Mar; 12(10):1334-41. PubMed ID: 26756792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Faradaic currents during electroforming of resistively switching Ag-Ge-Se type electrochemical metallization memory cells.
    Schindler C; Valov I; Waser R
    Phys Chem Chem Phys; 2009 Jul; 11(28):5974-9. PubMed ID: 19588020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.