BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28459604)

  • 1. Magnesium Sulfate Salt Solutions and Ices Fail to Protect Serratia liquefaciens from the Biocidal Effects of UV Irradiation under Martian Conditions.
    Mickol RL; Page JL; Schuerger AC
    Astrobiology; 2017 May; 17(5):401-412. PubMed ID: 28459604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic responses of Serratia liquefaciens cells grown under simulated Martian conditions of low temperature, low pressure, and CO
    Fajardo-Cavazos P; Morrison MD; Miller KM; Schuerger AC; Nicholson WL
    Sci Rep; 2018 Oct; 8(1):14938. PubMed ID: 30297913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Hypopiezotolerant Bacterium,
    Schuerger AC; Mickol RL; Schwendner P
    Life (Basel); 2020 May; 10(6):. PubMed ID: 32466370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of simulated Mars conditions on the survival and growth of Escherichia coli and Serratia liquefaciens.
    Berry BJ; Jenkins DG; Schuerger AC
    Appl Environ Microbiol; 2010 Apr; 76(8):2377-86. PubMed ID: 20154104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt Tolerance and UV Protection of
    Godin PJ; Schuerger AC; Moores JE
    Astrobiology; 2021 Apr; 21(4):394-404. PubMed ID: 33237800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of Serratia liquefaciens under 7 mbar, 0°C, and CO2-enriched anoxic atmospheres.
    Schuerger AC; Ulrich R; Berry BJ; Nicholson WL
    Astrobiology; 2013 Feb; 13(2):115-31. PubMed ID: 23289858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival of Bacillus subtilis endospores on ultraviolet-irradiated rover wheels and Mars regolith under simulated Martian conditions.
    Kerney KR; Schuerger AC
    Astrobiology; 2011 Jun; 11(5):477-85. PubMed ID: 21707388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preservation of Biomarkers from Cyanobacteria Mixed with Mars-Like Regolith Under Simulated Martian Atmosphere and UV Flux.
    Baqué M; Verseux C; Böttger U; Rabbow E; de Vera JP; Billi D
    Orig Life Evol Biosph; 2016 Jun; 46(2-3):289-310. PubMed ID: 26530341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survivability of Psychrobacter cryohalolentis K5 under simulated martian surface conditions.
    Smith DJ; Schuerger AC; Davidson MM; Pacala SW; Bakermans C; Onstott TC
    Astrobiology; 2009 Mar; 9(2):221-8. PubMed ID: 19371162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars.
    Schuerger AC; Mancinelli RL; Kern RG; Rothschild LJ; McKay CP
    Icarus; 2003 Oct; 165(2):253-76. PubMed ID: 14649627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic fingerprints of Serratia liquefaciens under simulated Martian conditions using Biolog GN2 microarrays.
    Schwendner P; Schuerger AC
    Sci Rep; 2018 Oct; 8(1):15721. PubMed ID: 30356072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the Stability of Gly·MgSO
    Bonales LJ; Mateo-Martí E
    Astrobiology; 2022 Jan; 22(1):75-86. PubMed ID: 34874753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solar UV irradiation conditions on the surface of Mars.
    Rontó G; Bérces A; Lammer H; Cockell CS; Molina-Cuberos GJ; Patel MR; Selsis F
    Photochem Photobiol; 2003 Jan; 77(1):34-40. PubMed ID: 12856880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PELS (Planetary Environmental Liquid Simulator): a new type of simulation facility to study extraterrestrial aqueous environments.
    Martin D; Cockell CS
    Astrobiology; 2015 Feb; 15(2):111-8. PubMed ID: 25651097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ultraviolet on the survival of bacteria airborne in simulated Martian dust clouds.
    Hagen CA; Hawrylewicz EJ; Anderson BT; Cephus ML
    Life Sci Space Res; 1970; 8():53-8. PubMed ID: 12664918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Addition of anaerobic electron acceptors to solid media did not enhance growth of 125 spacecraft bacteria under simulated low-pressure Martian conditions.
    Schwendner P; Jobson ME; Schuerger AC
    Sci Rep; 2020 Oct; 10(1):18290. PubMed ID: 33106561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial survival rates of Escherichia coli and Deinococcus radiodurans under low temperature, low pressure, and UV-Irradiation conditions, and their relevance to possible Martian life.
    Diaz B; Schulze-Makuch D
    Astrobiology; 2006 Apr; 6(2):332-47. PubMed ID: 16689650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Survival of Deinococcus geothermalis in Biofilms under Desiccation and Simulated Space and Martian Conditions.
    Frösler J; Panitz C; Wingender J; Flemming HC; Rettberg P
    Astrobiology; 2017 May; 17(5):431-447. PubMed ID: 28520474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface characteristics of spacecraft components affect the aggregation of microorganisms and may lead to different survival rates of bacteria on Mars landers.
    Schuerger AC; Richards JT; Hintze PE; Kern RG
    Astrobiology; 2005 Aug; 5(4):545-59. PubMed ID: 16078871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twenty Species of Hypobarophilic Bacteria Recovered from Diverse Soils Exhibit Growth under Simulated Martian Conditions at 0.7 kPa.
    Schuerger AC; Nicholson WL
    Astrobiology; 2016 Dec; 16(12):964-976. PubMed ID: 27870556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.