These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 28459744)

  • 1. Electrical Stimulation of Artificial Heart Muscle: A Look Into the Electrophysiologic and Genetic Implications.
    Mohamed MA; Islas JF; Schwartz RJ; Birla RK
    ASAIO J; 2017; 63(3):333-341. PubMed ID: 28459744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishing the Framework for Tissue Engineered Heart Pumps.
    Mohamed MA; Hogan MK; Patel NM; Tao ZW; Gutierrez L; Birla RK
    Cardiovasc Eng Technol; 2015 Sep; 6(3):220-9. PubMed ID: 26577356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering.
    Barash Y; Dvir T; Tandeitnik P; Ruvinov E; Guterman H; Cohen S
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1417-26. PubMed ID: 20367291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and fabrication of heart muscle using scaffold-based tissue engineering.
    Blan NR; Birla RK
    J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 32-Channel System to Measure the Electrophysiological Properties of Bioengineered Cardiac Muscle.
    Salazar BH; Reddy AK; Zewei Tao ; Madala S; Birla RK
    IEEE Trans Biomed Eng; 2015 Jun; 62(6):1614-22. PubMed ID: 25667345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a novel bioreactor for the mechanical loading of tissue-engineered heart muscle.
    Birla RK; Huang YC; Dennis RG
    Tissue Eng; 2007 Sep; 13(9):2239-48. PubMed ID: 17590151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue.
    Maidhof R; Tandon N; Lee EJ; Luo J; Duan Y; Yeager K; Konofagou E; Vunjak-Novakovic G
    J Tissue Eng Regen Med; 2012 Nov; 6(10):e12-23. PubMed ID: 22170772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variable optimization for the formation of three-dimensional self-organized heart muscle.
    Khait L; Hodonsky CJ; Birla RK
    In Vitro Cell Dev Biol Anim; 2009 Dec; 45(10):592-601. PubMed ID: 19756885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioengineering Cardiac Tissue Constructs With Adult Rat Cardiomyocytes.
    Tao ZW; Mohamed M; Jacot JG; Birla RK
    ASAIO J; 2018; 64(5):e105-e114. PubMed ID: 29538014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Cyclic Strain Bioreactor for Mechanical Enhancement and Assessment of Bioengineered Myocardial Constructs.
    Salazar BH; Cashion AT; Dennis RG; Birla RK
    Cardiovasc Eng Technol; 2015 Dec; 6(4):533-45. PubMed ID: 26577484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force characteristics of in vivo tissue-engineered myocardial constructs using varying cell seeding densities.
    Birla R; Dhawan V; Huang YC; Lytle I; Tiranathanagul K; Brown D
    Artif Organs; 2008 Sep; 32(9):684-91. PubMed ID: 18684210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial cardiac tissue during stimulation and maturation.
    Kensah G; Gruh I; Viering J; Schumann H; Dahlmann J; Meyer H; Skvorc D; Bär A; Akhyari P; Heisterkamp A; Haverich A; Martin U
    Tissue Eng Part C Methods; 2011 Apr; 17(4):463-73. PubMed ID: 21142417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of left ventricular stretching in model cultivations with neonatal cardiomyocytes in a whole-heart bioreactor.
    Hülsmann J; Aubin H; Wehrmann A; Lichtenberg A; Akhyari P
    Biotechnol Bioeng; 2017 May; 114(5):1107-1117. PubMed ID: 28019665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation into the effects of varying frequency of mechanical stimulation in a cycle-by-cycle manner on engineered cardiac construct function.
    Morgan KY; Black LD
    J Tissue Eng Regen Med; 2017 Feb; 11(2):342-353. PubMed ID: 24916022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishing the framework to support bioartificial heart fabrication using fibrin-based three-dimensional artificial heart muscle.
    Hogan M; Mohamed M; Tao ZW; Gutierrez L; Birla R
    Artif Organs; 2015 Feb; 39(2):165-71. PubMed ID: 24841763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic culture yields engineered myocardium with near-adult functional output.
    Jackman CP; Carlson AL; Bursac N
    Biomaterials; 2016 Dec; 111():66-79. PubMed ID: 27723557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating the functional performance of bioengineered heart muscle using growth factor stimulation.
    Huang YC; Khait L; Birla RK
    Ann Biomed Eng; 2008 Aug; 36(8):1372-82. PubMed ID: 18500554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers.
    Xue T; Cho HC; Akar FG; Tsang SY; Jones SP; Marbán E; Tomaselli GF; Li RA
    Circulation; 2005 Jan; 111(1):11-20. PubMed ID: 15611367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contractile three-dimensional bioengineered heart muscle for myocardial regeneration.
    Huang YC; Khait L; Birla RK
    J Biomed Mater Res A; 2007 Mar; 80(3):719-31. PubMed ID: 17154158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs.
    Morgan KY; Black LD
    Tissue Eng Part A; 2014 Jun; 20(11-12):1654-67. PubMed ID: 24410342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.