BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 28459880)

  • 1. Ensemble yield simulations: Using heat-tolerant and later-maturing varieties to adapt to climate warming.
    Zhang Y; Zhao Y
    PLoS One; 2017; 12(5):e0176766. PubMed ID: 28459880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growing sensitivity of maize to water scarcity under climate change.
    Meng Q; Chen X; Lobell DB; Cui Z; Zhang Y; Yang H; Zhang F
    Sci Rep; 2016 Jan; 6():19605. PubMed ID: 26804136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The important but weakening maize yield benefit of grain filling prolongation in the US Midwest.
    Zhu P; Jin Z; Zhuang Q; Ciais P; Bernacchi C; Wang X; Makowski D; Lobell D
    Glob Chang Biol; 2018 Oct; 24(10):4718-4730. PubMed ID: 29901245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China.
    Liu Z; Hubbard KG; Lin X; Yang X
    Glob Chang Biol; 2013 Nov; 19(11):3481-92. PubMed ID: 23857749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Impacts of climate change on summer maize production and adaptive selection of varieties in Xingtai County, Hebei, China].
    Wang HF; Chen XP; Cui ZL; Meng QF
    Ying Yong Sheng Tai Xue Bao; 2014 Jan; 25(1):155-61. PubMed ID: 24765855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate change and maize yield in southern Africa: what can farm management do?
    Rurinda J; van Wijk MT; Mapfumo P; Descheemaeker K; Supit I; Giller KE
    Glob Chang Biol; 2015 Dec; 21(12):4588-601. PubMed ID: 26251975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Spectral Characteristics of Spring Maize Varieties with Different Heat Tolerance to High Temperature].
    Tao ZQ; Chen YQ; Zou JX; Li C; Yuan SF; Yan P; Shi JT; Sui P
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Feb; 36(2):520-6. PubMed ID: 27209761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the impact of climate variability on maize using simulation modeling under semi-arid environment of Punjab, Pakistan.
    Ahmed I; Ur Rahman MH; Ahmed S; Hussain J; Ullah A; Judge J
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28413-28430. PubMed ID: 30083905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981-2009.
    Xiao D; Tao F
    Int J Biometeorol; 2016 Jul; 60(7):1111-22. PubMed ID: 26589829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CERES-Maize model-based simulation of climate change impacts on maize yields and potential adaptive measures in Heilongjiang Province, China.
    Lin Y; Wu W; Ge Q
    J Sci Food Agric; 2015 Nov; 95(14):2838-49. PubMed ID: 25428548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated CO
    Qiao Y; Miao S; Li Q; Jin J; Luo X; Tang C
    Sci Total Environ; 2019 May; 666():405-413. PubMed ID: 30802656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Comparison of potential yield and resource utilization efficiency of main food crops in three provinces of Northeast China under climate change].
    Wang XY; Yang XG; Sun S; Xie WJ
    Ying Yong Sheng Tai Xue Bao; 2015 Oct; 26(10):3091-102. PubMed ID: 26995918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing genotype-environment-management interactions for maize farmers to adapt to climate change in different agro-ecological zones across China.
    Zhang L; Zhang Z; Luo Y; Cao J; Li Z
    Sci Total Environ; 2020 Aug; 728():138614. PubMed ID: 32344223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios.
    Zhang Y; Wang Y; Niu H
    Sci Total Environ; 2019 Mar; 656():373-387. PubMed ID: 30513428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling.
    Liu B; Asseng S; Liu L; Tang L; Cao W; Zhu Y
    Glob Chang Biol; 2016 May; 22(5):1890-903. PubMed ID: 26725507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Temporal and spatial variation of the optimal sowing dates of summer maize based on both statistical and processes models in Henan Province, China].
    Tan MX; Wang J; Yu WD; He D; Wang N; Dai T; Sun Y; Tang JZ; Chang Q
    Ying Yong Sheng Tai Xue Bao; 2015 Dec; 26(12):3670-8. PubMed ID: 27112004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased heat stress risk for maize in arid-based climates as affected by climate change: threats and solutions.
    Deihimfard R; Rahimi-Moghaddam S; Azizi K; Haghighat M
    Int J Biometeorol; 2022 Jul; 66(7):1365-1378. PubMed ID: 35462607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change.
    Chen X; Chen F; Chen Y; Gao Q; Yang X; Yuan L; Zhang F; Mi G
    Glob Chang Biol; 2013 Mar; 19(3):923-36. PubMed ID: 23504848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Impacts of adaptive measures to climate changes on climatic potential productivity of maize in northeast China.].
    Chu Z; Guo JP
    Ying Yong Sheng Tai Xue Bao; 2018 Jun; 29(6):1885-1892. PubMed ID: 29974698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating adaptation strategies to offset potential impacts of climate variability and change on maize yields in Embu County, Kenya.
    Gummadi S; Kadiyala MDM; Rao KPC; Athanasiadis I; Mulwa R; Kilavi M; Legesse G; Amede T
    PLoS One; 2020; 15(11):e0241147. PubMed ID: 33151967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.