BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 28459979)

  • 21. Analysis of the CHN1 gene in patients with various types of congenital ocular motility disorders.
    Volk AE; Fricke J; Strobl J; Kolling G; Kubisch C; Neugebauer A
    Graefes Arch Clin Exp Ophthalmol; 2010 Sep; 248(9):1351-7. PubMed ID: 20535495
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Axon guidance in the developing ocular motor system and Duane retraction syndrome depends on Semaphorin signaling via alpha2-chimaerin.
    Ferrario JE; Baskaran P; Clark C; Hendry A; Lerner O; Hintze M; Allen J; Chilton JK; Guthrie S
    Proc Natl Acad Sci U S A; 2012 Sep; 109(36):14669-74. PubMed ID: 22912401
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The congenital cranial dysinnervation disorders.
    Gutowski NJ; Chilton JK
    Arch Dis Child; 2015 Jul; 100(7):678-81. PubMed ID: 25633065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Congenital fibrosis of the extra-ocular muscles (CFEOM) and the cranial dysinnervation disorders.
    Vivian AJ
    Eye (Lond); 2020 Feb; 34(2):251-255. PubMed ID: 31804624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. KIF21A pathogenic variants cause congenital fibrosis of extraocular muscles type 3.
    Al-Haddad C; Boustany RM; Rachid E; Ismail K; Barry B; Chan WM; Engle E
    Ophthalmic Genet; 2021 Apr; 42(2):195-199. PubMed ID: 33251926
    [No Abstract]   [Full Text] [Related]  

  • 26. α2-Chimaerin regulates a key axon guidance transition during development of the oculomotor projection.
    Clark C; Austen O; Poparic I; Guthrie S
    J Neurosci; 2013 Oct; 33(42):16540-51. PubMed ID: 24133258
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Congenital innervation dysgenesis syndrome (CID)/congenital cranial dysinnervation disorders (CCDDs).
    Assaf AA
    Eye (Lond); 2011 Oct; 25(10):1251-61. PubMed ID: 21720410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A TUBB6 mutation is associated with autosomal dominant non-progressive congenital facial palsy, bilateral ptosis and velopharyngeal dysfunction.
    Fazeli W; Herkenrath P; Stiller B; Neugebauer A; Fricke J; Lang-Roth R; Nürnberg G; Thoenes M; Becker J; Altmüller J; Volk AE; Kubisch C; Heller R
    Hum Mol Genet; 2017 Oct; 26(20):4055-4066. PubMed ID: 29016863
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Imaging findings in congenital cranial dysinnervation disorders.
    Ferreira RM; Amaral LL; Gonçalves MV; Lin K
    Top Magn Reson Imaging; 2011 Dec; 22(6):283-94. PubMed ID: 24132067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Congenital fibrosis of the extraocular muscles.
    Heidary G; Engle EC; Hunter DG
    Semin Ophthalmol; 2008; 23(1):3-8. PubMed ID: 18214786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Congenital and Genetic Ocular Motility Disorders: Update and Considerations.
    Oystreck D
    Am Orthopt J; 2015; 65():58-66. PubMed ID: 26564928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Loss of MAFB Function in Humans and Mice Causes Duane Syndrome, Aberrant Extraocular Muscle Innervation, and Inner-Ear Defects.
    Park JG; Tischfield MA; Nugent AA; Cheng L; Di Gioia SA; Chan WM; Maconachie G; Bosley TM; Summers CG; Hunter DG; Robson CD; Gottlob I; Engle EC
    Am J Hum Genet; 2016 Jun; 98(6):1220-1227. PubMed ID: 27181683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lack of KIF21A mutations in congenital fibrosis of the extraocular muscles type I patients from consanguineous Saudi Arabian families.
    Khan AO; Shinwari J; Omar A; Al-Sharif L; Khalil DS; Alanazi M; Al-Amri A; Al Tassan N
    Mol Vis; 2011 Jan; 17():218-24. PubMed ID: 21264235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel KIF21A mutation in a patient with congenital fibrosis of the extraocular muscles and Marcus Gunn jaw-winking phenomenon.
    Yamada K; Hunter DG; Andrews C; Engle EC
    Arch Ophthalmol; 2005 Sep; 123(9):1254-9. PubMed ID: 16157808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Axonal Growth Abnormalities Underlying Ocular Cranial Nerve Disorders.
    Whitman MC
    Annu Rev Vis Sci; 2021 Sep; 7():827-850. PubMed ID: 34081534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tubulin CFEOM mutations both inhibit or activate kinesin motor activity.
    Luchniak A; Roy PS; Kumar A; Schneider IC; Gelfand VI; Jernigan RL; Gupta ML
    Mol Biol Cell; 2024 Mar; 35(3):ar32. PubMed ID: 38170592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Advances in research of synergistic divergence].
    Chen LP; Hao R; Zhang W
    Zhonghua Yan Ke Za Zhi; 2019 Jan; 55(1):63-67. PubMed ID: 30641676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CCDD Phenotype Associated with a Small Chromosome 2 Deletion.
    Abu-Amero KK; Bosley TM; Kondkar AA; Oystreck DT; Khan AO
    Semin Ophthalmol; 2015; 30(5-6):435-42. PubMed ID: 24475916
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetic Resonance Imaging Findings in Patients With Duane Retraction Syndrome.
    Guo Y; Zhang Q; Zhang T; Guo L; Liu S; Zhao K; Zhang W
    J Neuroophthalmol; 2024 Mar; 44(1):101-106. PubMed ID: 37682628
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maternal germline mosaicism of kinesin family member 21A (KIF21A) mutation causes complex phenotypes in a Chinese family with congenital fibrosis of the extraocular muscles.
    Liu G; Chen X; Sun X; Liu H; Zhao K; Chang Q; Pan X; Wang X; Yuan S; Liu Q; Zhao C
    Mol Vis; 2014; 20():15-23. PubMed ID: 24426772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.