These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 28460073)
21. Vitamin D signaling pathway plays an important role in the development of heart failure after myocardial infarction. Bae S; Singh SS; Yu H; Lee JY; Cho BR; Kang PM J Appl Physiol (1985); 2013 Apr; 114(8):979-87. PubMed ID: 23429874 [TBL] [Abstract][Full Text] [Related]
22. Vascular calcification in chronic kidney failure: role of vitamin D receptor. Wu-Wong JR; Melnick J Curr Opin Investig Drugs; 2007 Mar; 8(3):237-47. PubMed ID: 17408120 [TBL] [Abstract][Full Text] [Related]
23. Single-target RNA interference for the blockade of multiple interacting proinflammatory and profibrotic pathways in cardiac fibroblasts. Tank J; Lindner D; Wang X; Stroux A; Gilke L; Gast M; Zietsch C; Skurk C; Scheibenbogen C; Klingel K; Lassner D; Kühl U; Schultheiss HP; Westermann D; Poller W J Mol Cell Cardiol; 2014 Jan; 66():141-56. PubMed ID: 24239602 [TBL] [Abstract][Full Text] [Related]
24. Emerging role for the vitamin D receptor activator (VDRA), paricalcitol, in the treatment of secondary hyperparathyroidism. Cozzolino M; Brancaccio D Expert Opin Pharmacother; 2008 Apr; 9(6):947-54. PubMed ID: 18377338 [TBL] [Abstract][Full Text] [Related]
25. MicroRNA signature in wound healing following excimer laser ablation: role of miR-133b on TGFβ1, CTGF, SMA, and COL1A1 expression levels in rabbit corneal fibroblasts. Robinson PM; Chuang TD; Sriram S; Pi L; Luo XP; Petersen BE; Schultz GS Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):6944-51. PubMed ID: 24065814 [TBL] [Abstract][Full Text] [Related]
26. Regulation of Connective Tissue Growth Factor and Cardiac Fibrosis by an SRF/MicroRNA-133a Axis. Angelini A; Li Z; Mericskay M; Decaux JF PLoS One; 2015; 10(10):e0139858. PubMed ID: 26440278 [TBL] [Abstract][Full Text] [Related]
27. MicroRNA-323a-3p Promotes Pressure Overload-Induced Cardiac Fibrosis by Targeting TIMP3. Zhang J; Lang Y; Guo L; Pei Y; Hao S; Liang Z; Su G; Shu L; Liu H; Huang C; Xu J Cell Physiol Biochem; 2018; 50(6):2176-2187. PubMed ID: 30415251 [TBL] [Abstract][Full Text] [Related]
28. MiRNA-711-SP1-collagen-I pathway is involved in the anti-fibrotic effect of pioglitazone in myocardial infarction. Zhao N; Yu H; Yu H; Sun M; Zhang Y; Xu M; Gao W Sci China Life Sci; 2013 May; 56(5):431-9. PubMed ID: 23633075 [TBL] [Abstract][Full Text] [Related]
29. Antifibrotic response of cardiac fibroblasts in hypertensive hearts through enhanced TIMP-1 expression by basic fibroblast growth factor. Kinoshita T; Ishikawa Y; Arita M; Akishima-Fukasawa Y; Fujita K; Inomata N; Suzuki T; Namiki A; Mikami T; Ikeda T; Yamazaki J; Ishii T; Akasaka Y Cardiovasc Pathol; 2014; 23(2):92-100. PubMed ID: 24322055 [TBL] [Abstract][Full Text] [Related]
30. Long Noncoding RNA H19 Acts as a Competing Endogenous RNA to Mediate CTGF Expression by Sponging miR-455 in Cardiac Fibrosis. Huang ZW; Tian LH; Yang B; Guo RM DNA Cell Biol; 2017 Sep; 36(9):759-766. PubMed ID: 28753062 [TBL] [Abstract][Full Text] [Related]
31. The coordinated roles of miR-26a and miR-30c in regulating TGFβ1-induced epithelial-to-mesenchymal transition in diabetic nephropathy. Zheng Z; Guan M; Jia Y; Wang D; Pang R; Lv F; Xiao Z; Wang L; Zhang H; Xue Y Sci Rep; 2016 Nov; 6():37492. PubMed ID: 27874055 [TBL] [Abstract][Full Text] [Related]
32. Na/K-ATPase signaling mediates miR-29b-3p regulation and cardiac fibrosis formation in mice with chronic kidney disease. Drummond CA; Fan X; Haller ST; Kennedy DJ; Liu J; Tian J PLoS One; 2018; 13(5):e0197688. PubMed ID: 29775473 [TBL] [Abstract][Full Text] [Related]
34. Vitamin D receptor agonist VS-105 improves cardiac function in the presence of enalapril in 5/6 nephrectomized rats. Wu-Wong JR; Chen YW; Wessale JL Am J Physiol Renal Physiol; 2015 Feb; 308(4):F309-19. PubMed ID: 25503724 [TBL] [Abstract][Full Text] [Related]
35. Down-regulation of miR-15a/b accelerates fibrotic remodelling in the Type 2 diabetic human and mouse heart. Rawal S; Munasinghe PE; Nagesh PT; Lew JKS; Jones GT; Williams MJA; Davis P; Bunton D; Galvin IF; Manning P; Lamberts RR; Katare R Clin Sci (Lond); 2017 May; 131(9):847-863. PubMed ID: 28289072 [No Abstract] [Full Text] [Related]
36. [Effect of microRNA-133b on Myocardial Fibrosis]. Zhang SL; Fan FL; Wei F; Wang J; Zhang YS Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2019 Oct; 41(5):589-594. PubMed ID: 31699187 [TBL] [Abstract][Full Text] [Related]
37. TRAF3 Modulation: Novel Mechanism for the Anti-inflammatory Effects of the Vitamin D Receptor Agonist Paricalcitol in Renal Disease. Rayego-Mateos S; Morgado-Pascual JL; Valdivielso JM; Sanz AB; Bosch-Panadero E; Rodrigues-Díez RR; Egido J; Ortiz A; González-Parra E; Ruiz-Ortega M J Am Soc Nephrol; 2020 Sep; 31(9):2026-2042. PubMed ID: 32631974 [TBL] [Abstract][Full Text] [Related]
38. Nonclassical aspects of differential vitamin D receptor activation: implications for survival in patients with chronic kidney disease. Andress D Drugs; 2007; 67(14):1999-2012. PubMed ID: 17883284 [TBL] [Abstract][Full Text] [Related]
39. miR-29b-3p inhibits post-infarct cardiac fibrosis by targeting FOS. Xue Y; Fan X; Yang R; Jiao Y; Li Y Biosci Rep; 2020 Sep; 40(9):. PubMed ID: 32812641 [TBL] [Abstract][Full Text] [Related]
40. Differential effects of vitamin D receptor activators on vascular calcification in uremic rats. Mizobuchi M; Finch JL; Martin DR; Slatopolsky E Kidney Int; 2007 Sep; 72(6):709-15. PubMed ID: 17597697 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]