These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
433 related articles for article (PubMed ID: 28460304)
1. Adhesion profile and differentiation capacity of human adipose tissue derived mesenchymal stem cells grown on metal ion (Zn, Ag and Cu) doped hydroxyapatite nano-coated surfaces. Bostancioglu RB; Gurbuz M; Akyurekli AG; Dogan A; Koparal AS; Koparal AT Colloids Surf B Biointerfaces; 2017 Jul; 155():415-428. PubMed ID: 28460304 [TBL] [Abstract][Full Text] [Related]
2. Low-magnitude, high-frequency vibration promotes the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells cultured on a hydroxyapatite-coated surface: The direct role of Wnt/β-catenin signaling pathway activation. Chen B; Lin T; Yang X; Li Y; Xie D; Zheng W; Cui H; Deng W; Tan X Int J Mol Med; 2016 Nov; 38(5):1531-1540. PubMed ID: 28026000 [TBL] [Abstract][Full Text] [Related]
3. Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells. Xia L; Lin K; Jiang X; Fang B; Xu Y; Liu J; Zeng D; Zhang M; Zhang X; Chang J; Zhang Z Biomaterials; 2014 Oct; 35(30):8514-27. PubMed ID: 25002263 [TBL] [Abstract][Full Text] [Related]
4. Growth and osteogenic differentiation of alveolar human bone marrow-derived mesenchymal stem cells on chitosan/hydroxyapatite composite fabric. Kim BS; Kim JS; Chung YS; Sin YW; Ryu KH; Lee J; You HK J Biomed Mater Res A; 2013 Jun; 101(6):1550-8. PubMed ID: 23135904 [TBL] [Abstract][Full Text] [Related]
5. Interplay of Substrate Conductivity, Cellular Microenvironment, and Pulsatile Electrical Stimulation toward Osteogenesis of Human Mesenchymal Stem Cells in Vitro. Thrivikraman G; Lee PS; Hess R; Haenchen V; Basu B; Scharnweber D ACS Appl Mater Interfaces; 2015 Oct; 7(41):23015-28. PubMed ID: 26418613 [TBL] [Abstract][Full Text] [Related]
6. Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications. Dittler ML; Unalan I; Grünewald A; Beltrán AM; Grillo CA; Destch R; Gonzalez MC; Boccaccini AR Colloids Surf B Biointerfaces; 2019 Oct; 182():110346. PubMed ID: 31325780 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells. Domingos M; Gloria A; Coelho J; Bartolo P; Ciurana J Proc Inst Mech Eng H; 2017 Jun; 231(6):555-564. PubMed ID: 28056713 [TBL] [Abstract][Full Text] [Related]
8. Modulation of human mesenchymal stem cell behavior on ordered tantalum nanotopographies fabricated using colloidal lithography and glancing angle deposition. Wang PY; Bennetsen DT; Foss M; Ameringer T; Thissen H; Kingshott P ACS Appl Mater Interfaces; 2015 Mar; 7(8):4979-89. PubMed ID: 25664369 [TBL] [Abstract][Full Text] [Related]
9. Surface nano-modification by ion beam-assisted deposition alters the expression of osteogenic genes in osteoblasts. Miralami R; Haider H; Sharp JG; Namavar F; Hartman CW; Garvin KL; Hunter CD; Premaraj T; Thiele GM Proc Inst Mech Eng H; 2019 Sep; 233(9):921-930. PubMed ID: 31223052 [TBL] [Abstract][Full Text] [Related]
10. Cellular and transcriptomic analysis of human mesenchymal stem cell response to plasma-activated hydroxyapatite coating. Tan F; O'Neill F; Naciri M; Dowling D; Al-Rubeai M Acta Biomater; 2012 Apr; 8(4):1627-38. PubMed ID: 22202907 [TBL] [Abstract][Full Text] [Related]
11. Endocytic mechanisms and osteoinductive profile of hydroxyapatite nanoparticles in human umbilical cord Wharton's jelly-derived mesenchymal stem cells. Shi X; Zhou K; Huang F; Zhang J; Wang C Int J Nanomedicine; 2018; 13():1457-1470. PubMed ID: 29559775 [TBL] [Abstract][Full Text] [Related]
12. Enhanced cytocompatibility and osteoinductive properties of sol-gel-derived silica/zirconium dioxide coatings by metformin functionalization. Śmieszek A; Szydlarska J; Mucha A; Chrapiec M; Marycz K J Biomater Appl; 2017 Nov; 32(5):570-586. PubMed ID: 29113566 [TBL] [Abstract][Full Text] [Related]
13. Osteogenic differentiation on DLC-PDMS-h surface. Soininen A; Kaivosoja E; Sillat T; Virtanen S; Konttinen YT; Tiainen VM J Biomed Mater Res B Appl Biomater; 2014 Oct; 102(7):1462-72. PubMed ID: 24574187 [TBL] [Abstract][Full Text] [Related]
14. [A preliminary study for the effect of nano hydroxyapatite on human adipose-derived mesenchymal stem cells mixture 3D bio-printing]. Song Y; Wang XF; Wang YG; Dong F; Lv PJ Beijing Da Xue Xue Bao Yi Xue Ban; 2016 Oct; 48(5):894-899. PubMed ID: 27752177 [TBL] [Abstract][Full Text] [Related]
15. The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering. Chuenjitkuntaworn B; Osathanon T; Nowwarote N; Supaphol P; Pavasant P J Biomed Mater Res A; 2016 Jan; 104(1):264-71. PubMed ID: 26362586 [TBL] [Abstract][Full Text] [Related]
16. Osteogenic differentiation of rat mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells: melatonin as a differentiation factor. Zaminy A; Ragerdi Kashani I; Barbarestani M; Hedayatpour A; Mahmoudi R; Farzaneh Nejad A Iran Biomed J; 2008 Jul; 12(3):133-41. PubMed ID: 18762816 [TBL] [Abstract][Full Text] [Related]
17. Incorporation of Cerium Oxide into Hydroxyapatite Coating Protects Bone Marrow Stromal Cells Against H Li K; Shen Q; Xie Y; You M; Huang L; Zheng X Biol Trace Elem Res; 2018 Mar; 182(1):91-104. PubMed ID: 28624869 [TBL] [Abstract][Full Text] [Related]
18. Osteogenic potential of adipose stem cells on hydroxyapatite-functionalized decellularized amniotic membrane. Firouzeh A; Shabani I; Karimi-Soflou R; Shabani A Colloids Surf B Biointerfaces; 2024 Aug; 240():113974. PubMed ID: 38810465 [TBL] [Abstract][Full Text] [Related]
19. The role of the micro-pattern and nano-topography of hydroxyapatite bioceramics on stimulating osteogenic differentiation of mesenchymal stem cells. Zhao C; Wang X; Gao L; Jing L; Zhou Q; Chang J Acta Biomater; 2018 Jun; 73():509-521. PubMed ID: 29678674 [TBL] [Abstract][Full Text] [Related]
20. Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects. Zhao S; Wang H; Zhang Y; Huang W; Rahaman MN; Liu Z; Wang D; Zhang C Acta Biomater; 2015 Mar; 14():185-96. PubMed ID: 25534470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]