These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 2846040)
1. Cytochrome c peroxidase mutant active site structures probed by resonance Raman and infrared signatures of the CO adducts. Smulevich G; Mauro JM; Fishel LA; English AM; Kraut J; Spiro TG Biochemistry; 1988 Jul; 27(15):5486-92. PubMed ID: 2846040 [TBL] [Abstract][Full Text] [Related]
2. Conformational change and histidine control of heme chemistry in cytochrome c peroxidase: resonance Raman evidence from Leu-52 and Gly-181 mutants of cytochrome c peroxidase. Smulevich G; Miller MA; Kraut J; Spiro TG Biochemistry; 1991 Oct; 30(39):9546-58. PubMed ID: 1654102 [TBL] [Abstract][Full Text] [Related]
3. Heme pocket interactions in cytochrome c peroxidase studied by site-directed mutagenesis and resonance Raman spectroscopy. Smulevich G; Mauro JM; Fishel LA; English AM; Kraut J; Spiro TG Biochemistry; 1988 Jul; 27(15):5477-85. PubMed ID: 2846039 [TBL] [Abstract][Full Text] [Related]
5. Raman and infrared spectra of cytochrome c peroxidase-carbon monoxide adducts in alternative conformational states. Smulevich G; Evangelista-Kirkup R; English A; Spiro TG Biochemistry; 1986 Jul; 25(15):4426-30. PubMed ID: 3019391 [TBL] [Abstract][Full Text] [Related]
6. CO dissociation in cytochrome c peroxidase: site-directed mutagenesis shows that distal Arg 48 influences CO dissociation rates. Miller MA; Mauro JM; Smulevich G; Coletta M; Kraut J; Traylor TG Biochemistry; 1990 Oct; 29(42):9978-88. PubMed ID: 2176859 [TBL] [Abstract][Full Text] [Related]
7. CO recombination in cytochrome c peroxidase: effect of the local heme environment on CO binding explored through site-directed mutagenesis. Miller MA; Coletta M; Mauro JM; Putnam LD; Farnum MF; Kraut J; Traylor TG Biochemistry; 1990 Feb; 29(7):1777-91. PubMed ID: 2158813 [TBL] [Abstract][Full Text] [Related]
8. X-ray structures of recombinant yeast cytochrome c peroxidase and three heme-cleft mutants prepared by site-directed mutagenesis. Wang JM; Mauro M; Edwards SL; Oatley SJ; Fishel LA; Ashford VA; Xuong NH; Kraut J Biochemistry; 1990 Aug; 29(31):7160-73. PubMed ID: 2169873 [TBL] [Abstract][Full Text] [Related]
9. Resonance Raman studies indicate a unique heme active site in prostaglandin H synthase. Lou BS; Snyder JK; Marshall P; Wang JS; Wu G; Kulmacz RJ; Tsai AL; Wang J Biochemistry; 2000 Oct; 39(40):12424-34. PubMed ID: 11015223 [TBL] [Abstract][Full Text] [Related]
10. Functional implications of the proximal hydrogen-bonding network in myoglobin: a resonance Raman and kinetic study of Leu89, Ser92, His97, and F-helix swap mutants. Peterson ES; Friedman JM; Chien EY; Sligar SG Biochemistry; 1998 Sep; 37(35):12301-19. PubMed ID: 9724545 [TBL] [Abstract][Full Text] [Related]
11. Characterization of recombinant horseradish peroxidase C and three site-directed mutants, F41V, F41W, and R38K, by resonance Raman spectroscopy. Smulevich G; Paoli M; Burke JF; Sanders SA; Thorneley RN; Smith AT Biochemistry; 1994 Jun; 33(23):7398-407. PubMed ID: 8003505 [TBL] [Abstract][Full Text] [Related]
12. Structural characterization of cytochrome c peroxidase by resonance Raman scattering. Dasgupta S; Rousseau DL; Anni H; Yonetani T J Biol Chem; 1989 Jan; 264(1):654-62. PubMed ID: 2535849 [TBL] [Abstract][Full Text] [Related]
13. The distal cavity structure of carbonyl horseradish peroxidase as probed by the resonance Raman spectra of His 42 Leu and Arg 38 Leu mutants. Feis A; Rodriguez-Lopez JN; Thorneley RN; Smulevich G Biochemistry; 1998 Sep; 37(39):13575-81. PubMed ID: 9753444 [TBL] [Abstract][Full Text] [Related]
14. Carbon monoxide adducts of KatG and KatG(S315T) as probes of the heme site and isoniazid binding. Lukat-Rodgers GS; Wengenack NL; Rusnak F; Rodgers KR Biochemistry; 2001 Jun; 40(24):7149-57. PubMed ID: 11401561 [TBL] [Abstract][Full Text] [Related]
15. Comparative proton NMR analysis of wild-type cytochrome c peroxidase from yeast, the recombinant enzyme from Escherichia coli, and an Asp-235----Asn-235 mutant. Satterlee JD; Erman JE; Mauro JM; Kraut J Biochemistry; 1990 Sep; 29(37):8797-804. PubMed ID: 2176836 [TBL] [Abstract][Full Text] [Related]
16. Electric field and conformational effects of cytochrome c and solvent on cytochrome c peroxidase studied by high-resolution fluorescence spectroscopy. Anni H; Vanderkooi JM; Sharp KA; Yonetani T; Hopkins SC; Herenyi L; Fidy J Biochemistry; 1994 Mar; 33(12):3475-86. PubMed ID: 8142344 [TBL] [Abstract][Full Text] [Related]
18. Interactions of Cu(B) with Carbon Monoxide in Cytochrome c Oxidase: Origin of the Anomalous Correlation between the Fe-CO and C-O Stretching Frequencies. Egawa T; Haber J; Fee JA; Yeh SR; Rousseau DL J Phys Chem B; 2015 Jul; 119(27):8509-20. PubMed ID: 26056844 [TBL] [Abstract][Full Text] [Related]
19. Metal-ligand vibrations of cyanoferric myeloperoxidase and cyanoferric horseradish peroxidase: evidence for a constrained heme pocket in myeloperoxidase. López-Garriga JJ; Oertling WA; Kean RT; Hoogland H; Wever R; Babcock GT Biochemistry; 1990 Oct; 29(40):9387-95. PubMed ID: 2174260 [TBL] [Abstract][Full Text] [Related]
20. Resonance Raman spectroscopy of cytochrome c peroxidase variants that mimic manganese peroxidase. Feng M; Tachikawa H; Wang X; Pfister TD; Gengenbach AJ; Lu Y J Biol Inorg Chem; 2003 Sep; 8(7):699-706. PubMed ID: 14505074 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]