These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Chemical and enzymic oxidation by tyrosinase of 3,4-dihydroxymandelate. Cabanes J; Sanchez-Ferrer A; Bru R; García-Carmona F Biochem J; 1988 Dec; 256(2):681-4. PubMed ID: 3146978 [TBL] [Abstract][Full Text] [Related]
3. Tyrosinase catalyzes an unusual oxidative decarboxylation of 3,4-dihydroxymandelate. Sugumaran M Biochemistry; 1986 Aug; 25(16):4489-92. PubMed ID: 3094574 [TBL] [Abstract][Full Text] [Related]
4. Mechanistic studies on tyrosinase-catalysed oxidative decarboxylation of 3,4-dihydroxymandelic acid. Sugumaran M; Dali H; Semensi V Biochem J; 1992 Jan; 281 ( Pt 2)(Pt 2):353-7. PubMed ID: 1736884 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical determination of diphenol oxidase activity using high-pressure liquid chromatography. Li JY; Christensen BM; Tracy JW Anal Biochem; 1990 Nov; 190(2):354-9. PubMed ID: 2127163 [TBL] [Abstract][Full Text] [Related]
6. The mechanism of tyrosinase-catalysed oxidative decarboxylation of alpha-(3,4-dihydroxyphenyl)-lactic acid. Sugumaran M; Dali H; Semensi V Biochem J; 1991 Aug; 277 ( Pt 3)(Pt 3):849-53. PubMed ID: 1908223 [TBL] [Abstract][Full Text] [Related]
7. Tyrosinase-catalyzed unusual oxidative dimerization of 1,2-dehydro-N-acetyldopamine. Sugumaran M; Dali H; Semensi V; Hennigan B J Biol Chem; 1987 Aug; 262(22):10546-9. PubMed ID: 3112146 [TBL] [Abstract][Full Text] [Related]
8. Catalytic oxidation of 2-aminophenols and ortho hydroxylation of aromatic amines by tyrosinase. Toussaint O; Lerch K Biochemistry; 1987 Dec; 26(26):8567-71. PubMed ID: 2964867 [TBL] [Abstract][Full Text] [Related]
9. The catalytic effect of tyrosinase upon oxidation of 2-hydroxyestradiol in presence of catechol. Jacobsohn GM; Jacobsohn MK Arch Biochem Biophys; 1984 Jul; 232(1):189-96. PubMed ID: 6430238 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic implications of variable stoichiometries of oxygen consumption during tyrosinase catalyzed oxidation of monophenols and o-diphenols. Peñalver MJ; Hiner AN; Rodríguez-López JN; García-Cánovas F; Tudela J Biochim Biophys Acta; 2002 May; 1597(1):140-8. PubMed ID: 12009413 [TBL] [Abstract][Full Text] [Related]
11. Initial mushroom tyrosinase-catalysed oxidation product of 4-hydroxyanisole is 4-methoxy-ortho-benzoquinone. Naish S; Cooksey CJ; Riley PA Pigment Cell Res; 1988; 1(6):379-81. PubMed ID: 3148921 [TBL] [Abstract][Full Text] [Related]
12. Isoproterenol oxidation by tyrosinase: intermediates characterization and kinetic study. Jiménez M; García-Cánovas F; García-Carmona F; Iborra JL; Lozano JA Biochem Int; 1985 Jul; 11(1):51-9. PubMed ID: 2994673 [TBL] [Abstract][Full Text] [Related]
13. Laccase--and not tyrosinase--is the enzyme responsible for quinone methide production from 2,6-dimethoxy-4-allyl phenol. Sugumaran M; Bolton JL Arch Biochem Biophys; 1998 May; 353(2):207-12. PubMed ID: 9606954 [TBL] [Abstract][Full Text] [Related]
14. Kinetic study of the transient phase of a chemical reaction system coupled to an enzymatically catalyzed step. Application to the oxidation of epinine by tyrosinase. Escribano J; García M; García Cánovas F; García Carmona F; Varón R; Tudela J; Lozano JA Biophys Chem; 1987 Jul; 27(1):15-25. PubMed ID: 3111559 [TBL] [Abstract][Full Text] [Related]
15. Analysis and interpretation of the action mechanism of mushroom tyrosinase on monophenols and diphenols generating highly unstable o-quinones. Fenoll LG; Rodríguez-López JN; García-Sevilla F; García-Ruiz PA; Varón R; García-Cánovas F; Tudela J Biochim Biophys Acta; 2001 Jul; 1548(1):1-22. PubMed ID: 11451433 [TBL] [Abstract][Full Text] [Related]
16. Chemical intermediates in dopamine oxidation by tyrosinase, and kinetic studies of the process. Jimenez M; Garcia-Carmona F; Garcia-Canovas F; Iborra JL; Lozano JA; Martinez F Arch Biochem Biophys; 1984 Dec; 235(2):438-48. PubMed ID: 6097187 [TBL] [Abstract][Full Text] [Related]
17. Oxidation of 3,4-dihydroxybenzylamine affords 3,4-dihydroxybenzaldehyde via the quinone methide intermediate. Sugumaran M Pigment Cell Res; 1995 Oct; 8(5):250-4. PubMed ID: 8789199 [TBL] [Abstract][Full Text] [Related]
18. Oxidative decarboxylation of 3,4-dihydroxymandelic acid to 3,4-dihydroxybenzaldehyde: electrochemical and HPLC analysis of the reaction mechanism. Czapla TH; Claeys MR; Morgan TD; Kramer KJ; Hopkins TL; Hawley MD Biochim Biophys Acta; 1991 Apr; 1077(3):400-6. PubMed ID: 2029539 [TBL] [Abstract][Full Text] [Related]
19. Major primary cytotoxic product of 4-hydroxyanisole oxidation by mushroom tyrosinase is 4-methoxy ortho benzoquinone. Naish S; Holden JL; Cooksey CJ; Riley PA Pigment Cell Res; 1988; 1(6):382-5. PubMed ID: 3148922 [TBL] [Abstract][Full Text] [Related]
20. A possible metabolic role for o-diphenoloxidase in Mycobacterium leprae. Prabhakaran K; Harris EB Experientia; 1985 Dec; 41(12):1571-2. PubMed ID: 3935479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]