These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28460969)

  • 1. Glycinin-gum arabic complex formation: Turbidity measurement and charge neutralization analysis.
    Dong D; Hua Y
    Food Res Int; 2016 Nov; 89(Pt 1):709-715. PubMed ID: 28460969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ovalbumin-gum arabic interactions: effect of pH, temperature, salt, biopolymers ratio and total concentration.
    Niu F; Su Y; Liu Y; Wang G; Zhang Y; Yang Y
    Colloids Surf B Biointerfaces; 2014 Jan; 113():477-82. PubMed ID: 24149009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and Characterization of β-Lactoglobulin and Gum Arabic Complexes: the Role of pH.
    Wang Z; Liu J; Gao J; Cao M; Ren G; Xie H; Yao M
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32854454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex coacervates obtained from peptide leucine and gum arabic: formation and characterization.
    Gulão Eda S; de Souza CJ; Andrade CT; Garcia-Rojas EE
    Food Chem; 2016 Mar; 194():680-6. PubMed ID: 26471607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex coacervation of whey proteins and gum arabic.
    Weinbreck F; de Vries R; Schrooyen P; de Kruif CG
    Biomacromolecules; 2003; 4(2):293-303. PubMed ID: 12625724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic interaction and complex formation between gum arabic and bovine serum albumin.
    Vinayahan T; Williams PA; Phillips GO
    Biomacromolecules; 2010 Dec; 11(12):3367-74. PubMed ID: 21067247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of gum Arabic, egg white protein, and their mixtures at the oil-water interface in limonene oil-in-water emulsions.
    Padala SR; Williams PA; Phillips GO
    J Agric Food Chem; 2009 Jun; 57(11):4964-73. PubMed ID: 19422219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gum arabic and Fe²⁺ synergistically improve the heat and acid stability of norbixin at pH 3.0-5.0.
    Guan Y; Zhong Q
    J Agric Food Chem; 2014 Dec; 62(52):12668-77. PubMed ID: 25479179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced stability of alcohol dehydrogenase by non-covalent interaction with polysaccharides.
    Jadhav SB; Bankar SB; Granström T; Ojamo H; Singhal RS; Survase SA
    Appl Microbiol Biotechnol; 2014; 98(14):6307-16. PubMed ID: 24658590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of redispersible polyelectrolyte complex nanoparticles from gallic acid-chitosan conjugate and gum arabic.
    Hu Q; Wang T; Zhou M; Xue J; Luo Y
    Int J Biol Macromol; 2016 Nov; 92():812-819. PubMed ID: 27475234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational modifications of alpha gliadin and globulin proteins upon complex coacervates formation with gum Arabic as studied by Raman microspectroscopy.
    Chourpa I; Ducel V; Richard J; Dubois P; Boury F
    Biomacromolecules; 2006 Sep; 7(9):2616-23. PubMed ID: 16961325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pH, salt, and biopolymer ratio on the formation of pea protein isolate-gum arabic complexes.
    Liu S; Low NH; Nickerson MT
    J Agric Food Chem; 2009 Feb; 57(4):1521-6. PubMed ID: 19170635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic compatibility of gelatin and tragacanth gum in aqueous systems.
    Molaahmadi Bahraseman N; Shekarchizadeh H; Goli SAH
    Food Chem; 2022 Mar; 373(Pt B):131584. PubMed ID: 34799129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the relationship between the main emulsion components and stability, viscosity, fluid behavior, zeta-potential, and electrophoretic mobility of orange beverage emulsion using response surface methodology.
    Mirhosseini H; Tan CP; Hamid NS; Yusof S
    J Agric Food Chem; 2007 Sep; 55(19):7659-66. PubMed ID: 17708646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complexation of chitosan with gum Arabic, sodium alginate and κ-carrageenan: Effects of pH, polymer ratio and salt concentration.
    Rabelo RS; Tavares GM; Prata AS; Hubinger MD
    Carbohydr Polym; 2019 Nov; 223():115120. PubMed ID: 31427003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of stable nanoparticles via electrostatic complexation between sodium caseinate and gum arabic.
    Ye A; Flanagan J; Singh H
    Biopolymers; 2006 Jun; 82(2):121-33. PubMed ID: 16453308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructure of polysaccharide complexes.
    Coelho S; Moreno-Flores S; Toca-Herrera JL; Coelho MA; Pereira MC; Rocha S
    J Colloid Interface Sci; 2011 Nov; 363(2):450-5. PubMed ID: 21872261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of gum arabic, maltodextrin and pullulan with lipids in emulsions.
    Matsumura Y; Satake C; Egami M; Mori T
    Biosci Biotechnol Biochem; 2000 Sep; 64(9):1827-35. PubMed ID: 11055384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and semi-quantitative determination of gum Arabic in wines by GC-MS and size exclusion chromatography.
    Gallina A; Fiorese E; Pastore P; Magno F
    Ann Chim; 2004 Mar; 94(3):177-84. PubMed ID: 15206839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced stabilization of cloudy emulsions with gum Arabic and whey protein isolate.
    Klein M; Aserin A; Svitov I; Garti N
    Colloids Surf B Biointerfaces; 2010 May; 77(1):75-81. PubMed ID: 20149604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.